首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是元素全都为1的,n阶方阵(n>1).证明:
设B是元素全都为1的,n阶方阵(n>1).证明:
admin
2016-03-26
35
问题
设B是元素全都为1的,n阶方阵(n>1).证明:
选项
答案
由[*]B=E—O=E(其中B
2
=nB),=>(E—B)
-1
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BbT4777K
0
考研数学三
相关试题推荐
习近平指出:“照抄照搬他国的政治制度行不通,会水土不服,会画虎不成反类犬,甚至会把国家前途命运葬送掉。只有扎根本国土壤、汲取充沛养分的制度,才最可靠、也最管用。”新中国成立70多年的实践充分证明,中国特色社会主义政治制度具有强大生命力,中国特色社会主义政治
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设A,B是同阶正定矩阵,则下列命题错误的是().
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设A与B均为n,阶矩阵,且A与B合同,则().
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
随机试题
________wecansucceedornotdependsonhowwellwecooperatewithothers.
下列哪种疾病常引起中老年患者肾病综合征
腹痛位于右上腹部,并向右肩部放射,提示
使用过量最易引起心律失常的药物是
某企业2018年年初房产原值3000万元,其中厂房原值2600万元,厂办幼儿园房产原值300万元,独立地下工业用仓库原值100万元。该企业2018年发生下列业务:(1)6月30日将原值为300万元的厂房出租,合同约定每年不含税租金24万元,7月1日起
关于私人银行业务,下列表述错误的是()。
国家对在中学中培养什么样的人才的总要求称为()。
无过错责任原则,是指不问行为人主观上是否有过错,只要其行为与损害后果存在因果关系,就应承担民事责任的归责原则。 根据以上定义,以下属于无过错责任原则的是:
Whoisthespeaker?
人和动物的区别,除了众所周知的诸多方面,恐怕还在于人有内心世界。
最新回复
(
0
)