首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2020-03-01
29
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
2
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
=-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/ByA4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A一1~B一1.正确命题的个数为()
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
设函数且λ>0,则∫—∞+∞xf(x)dx=______。
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
1在点M0(2a,)处的法线方程为_______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=_______.
如果的代数余子式A12=一1,则代数余子式A21=________.
已知A,B,C都是行列式值为2的三阶矩阵,则D==__________。
[2006年]设数列{xn}满足0<x1<π,xn-1=sinxn(n=1,2,…).证明xn存在,并求该极限.
以下四个命题,正确的个数为()①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
随机试题
燃气管道的阀门安装应注意的问题主要有()。
不属于批处理作业调度原则的是
在一般细胞,阈电位较其静息电位(均指绝对值)
患者呛咳阵作,喉中痰鸣气粗,胸高胁胀,痰黄质稠,烦闷不安,汗出面赤,口苦,舌红苔黄腻,脉弦滑。宜选用
属于酸碱两性的生物碱是
混凝土超声探伤采用()作用判别缺陷的基本依据。
幂级数的收敛域是:
设输入FM解调器的噪声是窄带高斯白噪声,则鉴频器输出的噪声功率谱密度与频率f的关系为()。
小学生情绪情感成熟的体现是社会性成分不断增加。()
结合材料,回答问题:材料1福州一所中学的十多名初二学生,因不满代课英语老师的教学方式,当堂通过举手表决要求更换老师。最终学校当局按照学生的要求更换了授课老师。学生“弹劾”老师的事件发生后,在社会上引发了广泛的关注和争议。围绕该
最新回复
(
0
)