首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2017-10-12
48
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于B=0的有效方程的个数(即r(B)),故r(A)≥r(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即
n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/C0H4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
设函数应当怎样选择a,使得f(x)在x=0处连续.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
求下列幂级数的收敛域:
设总体X—N(μ,0.722),(X1,X2,…,Xn)为X的一个样本,为样本均值,当n≥_____,才能使E[(X一μ)2]≤0.01.
设随机变量X,Y相互独立,且都服从(一1.1)上的均匀分布,令Z=max{X,Y},则P{0<Z<1}=_______
求幂级数的收敛半径、收敛域及和函数,并求
设函数f(x)=x+aln(1十x)+bxsinx.g(x)=kx3.若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
随机试题
合理采茶是实现茶叶高产优质的重要措施。
A.GluB.LysC.ProD.Trp属于酸性氨基酸的是
结核结节最重要的细胞成分是
生育年龄妇女,月经周期规则,放环5年,停经42天,少量阴道出血10天并伴腹部隐痛,昨天突然感下腹剧痛,继而出现休克症状,查尿尿妊娠试验(+)。下述哪项是错误的
扩散性疼痛是指
骨盆骨折合并尿道完全断裂,最好的处理是()
卷材防水、刚性防水屋面的最小坡度为()。
根据《票据法》的规定,下列情形中,不会导致汇票无效的是()。
对于企业负有应客户要求回购商品义务的售后回购交易,下列表述中正确的有()。
取保候审保证人应当履行的义务主要有()。
最新回复
(
0
)