首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则( )
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则( )
admin
2018-04-14
104
问题
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则( )
选项
A、在(1-δ,1)和(1,1+δ)内均有f(x)<x。
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x。
C、在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x。
D、在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x。
答案
A
解析
方法一:令F(x)=f(x)-x,则
F’(x)=f’(x)-1=f’(x)-f’(1)。
由于f’(x)严格单调减少,因此当x∈(1-δ,1)时,f’(x)>f’(1),则
F’(x)=f’(x)-f’(1)>0;
当x∈(1,1+ε)时,f’(x)<f’(1),则
F’(x)=f’(x)-f’(1)<0,
且在x=1处F’(1)=f’(1)-f’(1)=0,根据判定极值的第一充分条件:设函数f(x)在x
0
处连续,且在x
0
的某去心δ邻域内可导,若x∈(x
0
-δ,x
0
)时,f’(x)>0,而x∈(x
0
,x
0
+δ)时,f’(x)<0,则f(x)在x
0
处取得极大值,知F(x)在x=1处取极大值,即在(1-δ,1)和(1,1+δ)内均有F(x)<F(1)=0,也即f(x)<x。故选A。
方法二:排除法,取f(x)=-
+x,则
f’(x)=-2(x-1)+1=-2x+3,f"(x)=-2<0,
所以满足题设在区间(1-δ,1+δ)内具有二阶导数,g’(x)严格单调减少,且f(1)=f’(1)=1,当x<1时或x>1时,均有
f(x)=-
+x<x,
因此可以排除B,C,D,选A。
转载请注明原文地址:https://kaotiyun.com/show/C3k4777K
0
考研数学二
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),hˊ(1)=1,gˊ(1)=2,则g(1)等于().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设函数z=z(x,y)由方程F(x-ax,y-bx)=0所给出,其中F(u,v)任意可微,则
函数y=x+2cosx在[0,π/2]上的最大值为________.
设函数f(x)=x.tanx.esinx,则f(x)是().
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
用导数的定义求函数y=1-2x2在点x=1处的导数。
设f(u,v)具有二阶连续偏导数,且满足
设f(x,y)=,则函数在原点处偏导数存在的情况是().
随机试题
简述民国北京政府时期关于东西文化的辩论。(南开大学2017年世界历史真题)
病人一侧上、下肢无自主运动是
下列选项不属于海洋测绘科学性任务的是()。
证券公司内部控制应当贯彻( )的原则,确保内部控制有效。
某企业为增值税一般纳税人,购入乙种材料2500吨,收到的增值税专用发票上注明的售价为每吨1200元,增值税税额为510000元。另发生运输费用30000元、装卸费用10000元、途中保险费用9000元。原材料运抵企业后,验收入库原材料为2498吨,运输途中
A.Butitismytrain.B.theydidn’tknowthetrainwasgoingtoleave.C.wasveryexcited.D.Hurryup,please.E.lookedver
新课程倡导的学习方式是()。
近代第一部由国家公布实施的学制是壬寅学制。
下列有关元朝法制的表述正确的是()。
Whatisthepurposeofthetext?WeknowfromthetextthatthosewhoaregoingtoJapanwill______.
最新回复
(
0
)