首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2—2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y);
设曲线积分 ∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2—2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数. (Ⅰ)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y);
admin
2019-01-23
55
问题
设曲线积分 ∮
L
2[xφ(y)+ψ(y)]dx+[x
2
ψ(y)+2xy
2
—2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.
(Ⅰ)若φ(0)=一2,ψ(0)=1,试确定函数φ(y)与ψ(y);
(Ⅱ)计算沿L从点O(0,0)到M(π,
)的曲线积分.
选项
答案
(Ⅰ)由假设条件,该曲线积分与路径无关,将曲线积分记为∮
L
Pdx+Qdy,由单连通区域上曲线积分与路径无关的充要条件知,φ(y),ψ(y)满足[*],即 2[xφ’(y)+ψ’(y)]=2xψ(y)+2y
2
—2φ(y). 由此得 x[φ’(y)一ψ(y)]=y
2
一φ(y)一ψ’(y). 由于x,y是独立变量,若令x=0,则y
2
一φ(y)一ψ’(y)=0.将之代回上式又得 φ’(y)一ψ(y)=0. 因此,φ(y),ψ(y)满足[*] 将第一个方程ψ(y)=φ’(y)代入第二个方程得φ"(y)+φ(y)=y
2
.这是二阶线性常系数非齐次方程,它的通解是φ(y)=C
1
cosy+C
2
siny+y
2
—2.由条件φ(0)=一2,φ’(0)=ψ(0)=1,得c
1
=0,c
2
=1,于是求得φ(y)=siny+y
2
—2,ψ(y)=φ’(y)=cosy+2y. (Ⅱ)求u使得du=Pdx+Qdy.把φ,ψ的关系式代入并整理得 Pdx+Qdy=φ(y)dx
2
+x
2
dφ(y)+ψ(y)d(2x)+2x[y
2
一φ(y)]d), =d[x
2
φ(y)]+ψ(y)d(2x)+2xdψ(y) =d[x
2
φ(y)+2xψ(y)]. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/C5M4777K
0
考研数学一
相关试题推荐
设随机变量X与Y相互独立同分布,且X的概率分布为记U=max(X,Y),V=min(X,Y),试求:(I)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为
已知随机变量X~N(0,1),求:(I)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数ψ(x)表示)
设L为曲线求积分I=(x2+3y+3z)ds.
求下列平面上曲线积分I=,其中A(0,—1),B(1,0),为单位圆在第四象限部分.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
微分方程y’’+6y’+9y=0的通解y=______.
设y=y(x)是由确定的隐函数,求y’(0)和y’’(0)的值.
设=2,求a,b的值.
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)