首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
admin
2017-09-15
76
问题
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫
0
χ
(χ
2
-t
2
)f(t)dt,且当χ→0时,F′(χ)与χ
k
为同阶无穷小,求k.
选项
答案
F(χ)=∫
0
χ
(χ
2
-t
2
)f(t)dt=χ
2
∫
0
χ
f(t)dt=∫
0
χ
t
2
f(t)dt F′(χ)=2χ∫
0
χ
f(t)dt [*] 因为F′(χ)与χ
k
为同阶无穷小且f(0)=0,ff(0)≠0, 所以k-2=1,即k=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/CBk4777K
0
考研数学二
相关试题推荐
[*]
证明:[*]
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A,B为同阶可逆矩阵,则().
已知函数f(x)=(Ⅰ)求a的值;(Ⅱ)若当x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
随机试题
峰:山峰:碳达峰
老年男性,65岁,既往有胆囊结石病史,因上腹痛4小时由家属送诊,查体:意识淡漠,血压90/50mmHg,右上腹部肌紧张可能的诊断为
规划管理程序的设定应符合一些原则,下列与其不相关的是()。
资金筹集成本是指在资金筹集过程中所支付的费用,下列选项中不属于筹集成本的是( )。
混合运输的特点包括( )。
现场环境保护的意义不包括( )。
以下哪些选项的内容符合行政复议申请撤回的条件?()
VBA中命令Write#和Print#的区别是()。
Abouthalfoftheinfantandmaternaldeathsindevelopingcountriescouldbeavoidedifwomenhadusedfamilyplanningmethods
Asyoucrest(到达)ariseonMississippi’sHighway63,acalmbrownwaterwayflowsbeneaththebridge,andcranesandderricks(有井架)
最新回复
(
0
)