首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
admin
2017-09-07
26
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Ax=β的3个线性无关的解,k
1
,k
2
为任意常数,则Ax=β的通解为
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)
B、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)
C、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
D、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
答案
C
解析
分析一 因为η
1
,η
2
,η
3
足Ax=β的3个线性无关的解,那么η
2
-η
1
,η
3
-η
1
是Ax=0的2个线性无关的解.从而n-r(A)≥2,即3-r(A)≥2 r(A)≤1.
显然r(A)≥l,凶此r(A)=1.
由n-r(A)=3-1=2,知(A)、(B)均不正确.
又A(η
2
+η
3
)/2=1/2η
2
+1/2Aη
3
=β,故1/2(η
2
+η
3
)是方程组Ax=β的解.所以应选(C),
注意:1/2(η
2
+η
3
)是齐次方程组Ax=0的解.
分析二 用排除法(η
2
+η
3
)/2三是齐次线性方程组Ax=0的解,所以可排除选项(B),(D);又η
2
-η
1
,η
3
-η
1
线性无关,所以Ax=0的基础解系至少包含2个解向量,从而可排除选项(A).因此应选(C).
转载请注明原文地址:https://kaotiyun.com/show/CCr4777K
0
考研数学一
相关试题推荐
设随机变量X1,X2,X3,X4相互独立且都服从标准正态分布N(0,1),已知y=,对给定的α(0
设,则x→0时f(x)是g(x)的
求,其中L为x2+y2=a2上从点A(a,0)沿逆时针方向到点B(一12,0)的有向曲线段,其中a>0.
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设X~N(0,1),Y=X2,求Y的概率密度函数.
设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设A是n阶正定矩阵,证明:|E+A|>1.
求幂级数的和函数.在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
设A=(I)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
小脑半球中间部受损后将出现下列哪些症状
根据我国《精神药品品种目录》,下列药品为第一类精神药品的是
A、毒血症B、菌血症C、败血症D、脓毒血症E、感染中毒性休克病原体直接进入血液引起的全身症状()
【2006年真题】下列关于无节奏流水施工,正确的说法是()。
新课程背景下的教学模式应尽可能尊重()的主体地位。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
派生类的构造函数的成员初始化列表中,不能包含()。
Wheneveryou’restrugglingtofinishupataskatwork,listentosomeclassicalmusic.
WhenmykidsgoaweekendwithoutpizzaandTVwhilecamping,theythinktheyaresufferinggreat______.
Hardly_____________________________(他刚一进房间电话就响了).
最新回复
(
0
)