首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2017-12-29
27
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明:如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,则 A(α
1
+α
2
+α
3
)=A(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
2α
2
+λ
3
3α
3
,于是有 (λ—A 1)α
1
+(λ—λ
2
)α
2
+(λ—λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ一λ
1
=0,λ一λ
2
=0,λ—λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/CFX4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,且f(A)=f(b)=g(A)=0.证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(A)=f(b)=g(A)=g(b)=0.证明:在(a,b)内,g(x)≠0;
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程=3(1+t).
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
设二次型f(x1,x2,x3)=ax12+ax22+(n一1)x23+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设求f(x)的极值.
随机试题
资料:某企业2008年6月发生的部分经济业务如下:(1)购入不需要安装的设备一台,买价28000元,包装费1200元,运杂费800元,全部款项已用银行存款支付。(2)计提本月固定资产折旧费20000元,其中,车间14000元,行政管理部门6000元。
颅脑损伤病人病情观察,哪像最重要?()
动脉血流供应中断,导致局部组织细胞缺血坏死称为
3岁小儿的平均身长是
屋面柔性防水层应设保护层,对保护层的规定中,下列哪一条是不恰当的?[2004年第082题]
下列属于期货从业人员不正当竞争行为的是( )。
根据行政许可法的规定,有关行政许可的设定机关对其设定的行政许可进行评价的判断中,正确的是()。
下列朝代中,定都南京的朝代有()。
SowhyisGooglesuddenlysointerestedinrobots?That’sthequestioneveryone’saskingafteritemergedthismonththatthein
面条儿很好吃师傅做的这位
最新回复
(
0
)