首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(—∞,+∞)上连续,且分别在(—∞,0)与(0,+∞)上二次可导,其导函数f′(x)的图像如图(1)所示,则f(x)在(—∞,+∞)有
设函数f(x)在(—∞,+∞)上连续,且分别在(—∞,0)与(0,+∞)上二次可导,其导函数f′(x)的图像如图(1)所示,则f(x)在(—∞,+∞)有
admin
2022-04-08
68
问题
设函数f(x)在(—∞,+∞)上连续,且分别在(—∞,0)与(0,+∞)上二次可导,其导函数f′(x)的图像如图(1)所示,则f(x)在(—∞,+∞)有
选项
A、一个极大值点与两个拐点
B、一个极小值点与两个拐点
C、一个极大值点,一个极小值点与两个拐点
D、一个极大值点,一个极小值点与三个拐点
答案
D
解析
设a,b,c,d各点如图(2)所示,由题设可得下表:
(注意,表中对应于x=x
0
处注有“拐点”是指对应的点(x
0
,f(x
0
))为曲线y=f(x)的一个拐点.)
这表明函数f(x)有一个极大值点,一个极小值点以及三个拐点,结论D正确.
转载请注明原文地址:https://kaotiyun.com/show/Cbf4777K
0
考研数学二
相关试题推荐
设当x→0时,f(x)=ln(1+x2)一ln(1+sin2x)是x的n阶无穷小,则正整数n等于()
AB=0,A,B是两个非零矩阵,则
设X1,X2,…,Xn相互独立同分布,每个分布函数均为F(x),记X=min(X1,…,Xn),Y=max(X1,…,Xn),则(X,Y)的分布函数F(x,y)当y>x时在(x,y)处的值为()
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
设A是三阶方阵,将A的第1列和第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为()
线性方程组则有()
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2……αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1,+knα2+…+knαn=0。②如果α1,α2……αn线性无关,则对任意不全为零的常数k1,k2,…,kn,都
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
如图1-3—2,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
(2001年)已知函数y=f(χ)在其定义域内可导,它的图形如图2.3所示,则其导函数y=f′(z)的图形为【】
随机试题
Researchonfriendshiphasestablishedanumberoffacts,someinteresting,someevenuseful.Didyouknowthattheaveragestud
设y1(x),y2(x是二阶常系数线性微分方程yˊˊ+Pyˊ+qy=0的两个线性无关的解,则它的通解为________.
干姜的主治病证有
高血压危急症的处理原则最主要的是()
小儿,阵发性痉挛性咳嗽1个半月,经治疗咳嗽减轻,但痰粘难以咳出,伴低热,烦躁盗汗,舌红苔少,脉细数。治疗应首选方剂
狭义的金融犯罪是指金融业务活动本身的犯罪,主要是指“破坏金融管理秩序罪”及“金融诈骗罪”;广义的金融犯罪还包括金融机构工作人员的职务犯罪,如贪污、受贿、挪用公款罪等。()
初次见面握手时间应控制在3秒钟内,切记不可戴手套。()
国际足联总部位于()。
简述赫尔巴特的教学理论。【2012年-天津师大】【2015年-北师大】【2019年-苏州大学】
TheemploymentdiscriminationlawsuitagainstWal-Mart,whichtheSupremeCourtheardlastweek,isthelargestinAmericanhist
最新回复
(
0
)