首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).
admin
2019-04-28
87
问题
[2005年] 设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( ).
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
解一 首先注意α
1
,α
2
线性无关.在推导α
1
,A(α
1
+α
2
)线性无关的条件时要用到它.
设k
1
α
1
+k
2
A(α
1
+α
2
)=0,则k
1
α
1
+k
2
λ
1
α
1
+k
2
λ
2
α
2
=0,(k
1
+k
2
λ
1
)α
1
+k
2
λ
2
α
2
=0.因α
1
,α
2
线性无关,故k
1
+k
2
λ
1
=0,k
2
λ
2
=0.当λ
2
≠0时,有k
2
=0,从而k
1
=0.于是当λ
2
≠0时,α
1
,A(α
1
+α
2
)线性无关.
反之,若α
1
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
线性无关,则必有λ
2
≠0.因为如果λ
2
=0,则α
1
与A(α
1
+α
2
)=λ
1
α
1
线性相关与题设矛盾.综上所述,仅(B)入选.
解二 因向量组α
1
,A(α
1
+α
2
)=λ
1
α
1
+λ
2
α
2
可看成线性无关向量α
1
,α
2
的线性组合,且
[α
1
,A(α
1
+α
2
)]=[α
1
,λ
1
α
1
+λ
2
α
2
]=[α
1
,α
2
]
由命题2.3.2.2知,向量组α
1
,A(α
1
+α
2
)线性无关的充分必要条件是
的秩等于2,而秩
故仅(B)入选.
(注:命题2.3.2.2 设向量组α
1
,α
2
,…,α
s
线性无关,β
1
,β
2
,…,β
s
为该向量组的线性组合:
即
其中A=[a
ij
]
s×t
称为线性表示的系数矩阵.或
则向量组β
1
,β
2
,…,β
t
线性无关
线性表示的系数矩阵A=[a
ij
]
s×t
或矩阵K=A
T
的秩为t.)
转载请注明原文地址:https://kaotiyun.com/show/CzJ4777K
0
考研数学三
相关试题推荐
设幂级数的收敛半径分别为R1,R2,且R1<R2,设(an+bn)x1的收敛半径为R0,则有().
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设A为三阶矩阵,且|A|=4,则=______.
设A,B为n阶对称矩阵,下列结论不正确的是().
设有幂级数.(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y’’-y=-1;(3)求此幂级数的和函数.
设f(x)=,求f(x)的间断点并判断其类型.
求幂级数的收敛域,并求其和函数.
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
随机试题
肺气肿可导致
依据《普通高中美术课程标准(2017年版2020年修订)》,简述美术课程结构设计依据。
根据重要性原则,对企业生产经营影响不是很大的投资项目,可由企业_______审批()
简述敏感度分析的目的和主要作用。
A.胰液和胆汁分泌都减少B.胰液和胆汁分泌都增加C.胰液和胆汁分泌都不变D.胰分泌不变,胆汁分泌增加E.胰液分泌增加,胆汁分泌不变向狗静脉内注射阿托品
下列药物中,不易引起消化性溃疡的是()
小芬与谢辉结婚已有6年。刚刚结婚时谢辉对小芬很好,可时间长了,小芬发现谢辉的脾气越来越大,经常会因为一些小事就发脾气,小芬还不能辩解,否则就会招致谢辉的毒打。伤心的小芬想着也许有了孩子后,谢辉的脾气能够好一些,可是现在儿子已经3岁了,谢辉还是经常打骂小芬,
使罪犯在有关人士帮助、监督、辅导下能更好地适应社会自由生活,减少该罪犯再次犯罪的几率。下列选项中较能体现这一观念的制度是()。
在VisualFoxPro中,下面描述正确的是
BeMoreWeil-Spoken1.Preparealot■【T1】______yourideasbeforeyousaythem【T1】______■【T2】______whatyou’ll
最新回复
(
0
)