首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2017-08-28
38
问题
设向量组B:b
1
…,b
r
能由向量组A:a
1
,…a
s
线性表示为
(b
1
…b
r
)=(a
1
…,a
s
)K,
其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性: 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r. 又因为K为r×s阶矩阵,则有r(K)≤rain{r,s}. 且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r. 综上所述 r≤r(K)≤r,即r(K)=r. 充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*], 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=r[*]=r(K), 即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/D2r4777K
0
考研数学一
相关试题推荐
设为曲线y=y(x)在区间一1≤x≤1上的弧段,则平面第一型曲线积分=__________.
设是2阶实矩阵,则下列条件不是A相似于对角阵的充分条件的是()
设f(x)在(0,+∞)内可导,下述论断正确的是()
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
[-1/2,1/2)
设A是n(n≥3)阶矩阵,满足A3=0,则下列方程组中有惟一零解的是().
A、 B、 C、 D、 B
向量组α1,α2,…,αm线性无关的充分必要条件是().
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
随机试题
地龙的功效是()(1991年第25题)
用于风湿、类风湿性关节炎:用于心原性哮喘:
急性颅内压增高患者每日液体的人量不宜超出
患者,男性,37岁。有溃疡病史。中午饱餐后,出现上腹剧烈疼痛,伴恶心呕吐,腹肌紧张,出冷汗,休克。首先应考虑的并发症是
《中华人民共和国循环经济促进法》指出,发展循环经济应当在()的前提下,按照减量化的原则实施。
研究报告是社会工作研究的最终成果,它可以分为普通报告、学术报告和学位论文三种。其中普通报告至少必须包含的内容是()。[2009年真题]
下图为我国某城市某日“气温日变化曲线图”,读图完成以下题。该城市最有可能是()。
下列属于相对功利取向阶段的特征有()。
甲对公安机关限制其人身自由的行政强制措施不服,向公安机关所在地和户籍所在地的法院均提起了行政诉讼。关于该案的管辖下列说法正确的是()。
We’llgiveeveryteacherroomfordevelopment.
最新回复
(
0
)