首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为 (b1…br)=(a1…,as)K, 其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
admin
2017-08-28
63
问题
设向量组B:b
1
…,b
r
能由向量组A:a
1
,…a
s
线性表示为
(b
1
…b
r
)=(a
1
…,a
s
)K,
其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
选项
答案
必要性: 令B=(b
1
,…,b
r
),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组B:b
1
,b
2
,…,b
r
线性无关知r(B)=r,故r(K)≥r. 又因为K为r×s阶矩阵,则有r(K)≤rain{r,s}. 且由向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r. 综上所述 r≤r(K)≤r,即r(K)=r. 充分性:已知r(K)=r,向量组A线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*], 于是有PB=PAK=[*] 由矩阵秩的性质 r(B)=r(PB)=r[*]=r(K), 即r(B)=r(K)=r,因此向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/D2r4777K
0
考研数学一
相关试题推荐
设是2阶实矩阵,则下列条件不是A相似于对角阵的充分条件的是()
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是()
(2001年试题,一)设矩阵A满足A2+A一4E=0,其中E为单位矩阵,则(A—E)-1=_____________.
设A是n(n≥3)阶矩阵,满足A3=0,则下列方程组中有惟一零解的是().
A、 B、 C、 D、 C
(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中,写出此方程组的通解.
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
随机试题
当事人互负债务,有先后履行顺序,先履行一方未履行的,后履行一方有权拒绝其履行要求。此种抗辩属于()
A.肺脾气虚哮B.虚哮C.肺肾两虚哮D.寒包热哮患者短气声促。动则为甚,吸气不利,痰黏难咯,头晕耳鸣,烦热,颧红,舌红少苔,脉细数。此证属
某居住小区原有住宅建筑面积为50000m2,其中按规划需拆除原有住宅建筑面积10000m2,新建住宅建筑面积80000m2,则该小区的拆建比是()。
2016年1月4日,A公司与B公司签订商标销售合同,将一项酒类商标出售,A公司开出的增值税专用发票上注明的价款为200000元,增值税税额为12000元,款项已经存入银行。该商标的账面余额为210000元,累计摊销金额为60000元,未计提减值准备。A公司
不记名提单不能背书转让,可以避免在转让过程中可能带来的风险。()
(2018年)当今社会,由于社会结构和教育结构的复杂性,需要教师适应多种多样的社会角色,以便更好地促进学生发展。()是指教师通过学习、职业训练、社会交往等,了解社会对教师角色的期望和要求。
远古传说中,华胥履大迹于雷泽生伏羲,就是母系氏族_______情况的反映。从母系氏族社会起,每个氏族就采用一种动物、植物或无生物作为本氏族的名称,这就是_______。
WhichofthefollowingsentencesdoesNOTcontainanattributiveclause?
A、Theylookatahousesitter’sscorereport.B、Theyinterviewahousesitter’sfriends.C、Theycheckahousesitter’sreference
Whenwethinkofgreenbuildings,wetendtothinkofnewones—thekindofhigh-tech,solar-paneledmasterpiecesthatmakethec
最新回复
(
0
)