首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
admin
2014-04-23
82
问题
设f(x)在(0,+∞)内可导,下述论断正确的是 ( )
选项
A、设存在X>0,在区间(X,+∞)内f
’
(x)有界,则,f
’
(x)在(X,+∞)内亦必有界.
B、设存在X>0,在区间(X,+∞)内f(x)有界,则f
’
(x)在(X,+∞)内亦必有界.
C、设存在δ>0,在区间(0,δ)内f
’
(x)有界,则f(x)在(0,δ)内亦必有界.
D、设存在δ>0,在区间(0,δ)内f(x)有界,则f
’
(x)在(0,δ)内亦必有界.
答案
C
解析
C的证明.因为在(0,δ)内f
’
(x)有界,所以存在M>0,当0<x<δ时,|f
’
(x)|≤M.对于区间(0,δ)内的任意x,另取同定的x
0
∈(0,δ),有|f(x)|=f(x)-|f(x)+f(x
0
)|≤|f(x)一f(x
0
)|+|f(x
0
)|=|f
’
(ξ)(x一x
0
)|+f(x
0
)|<Mδ+f(x
0
)|.所以f(x)在区间(0,δ)内有界.A的反例:f(x)=x,f
’
(x)=1.在区间(1,+∞)内f
’
(x)有界.但f(x)在(1,+∞)内无界.B的反例:
在区间(1,+∞)内f(x)有界,在(1,+∞)内f
’
(x)无界.D的反例:
在区间(0,1)内,f(x)有界.在(0,1)内f
’
(x)无界.
转载请注明原文地址:https://kaotiyun.com/show/FA54777K
0
考研数学一
相关试题推荐
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设A为m×n矩阵,则下列结论不对的是().
f(x)=的可去间断点的个数为().
设向量组α1,α2线性无关,α1,α2,β1线性相关,又非零向量β2与α1,α2正交,则下列结论正确的是().
y=y(x)(x>0)是微分方程xy′-6y=﹣6满足y()=10的解.P为曲线y=y(x)上的一点,曲线y=y(x)在点P的法线在y轴上的截距为IP,为使IP最小,求P的坐标.
设函数f(x)在区间[0,1]上连续,则∫01f(x)dx=()
f(x)=∫x1cost2dt在区间[0,1]上的平均值为________.
判定二次型f(x1,x2,x3)=x12+2x22+4x32-2x1x2+4x1x3+6x2x3的正定性。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用第一问的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设f(x)=u(x)+v(x),g(x)=u(x)-v(x),并设都不存在,下列论断正确的是()
随机试题
直接材料预算、直接人工预算编制的基础是__________。
具有降气化痰作用具有解表散寒,宜肺止嗽作用
工作A有三项紧后工作B、C、D,其持续时间分别为5天、6天、7天,且B、C、D三项工作的最迟完成时间分别为第13天、第15天和第13天,则工作A的最迟完成时间是第()天。
在我国,机动车辆损失险的保险金额的确定依据不包括()。
我国房地产市场的土地转让是指()。
汉字教学被认为是汉语学习最大的难点,汉字教学的基本原则有哪些?
基于具有大学人学年龄的人数日益减少,很多大学现在预测每年新生班级人数越来越少,然而Nice大学的管理者们对今年比前一年增加了40%的合格的申请者感到惊讶,因此现在为所有新生开设的课程雇用了更多的教职员工。以下哪项关于Nice大学目前合格的申请者的论述,如果
我国正确处理工业化与信息化相互关系的主要方针是
Whichpassage(s)say(s)that….adultsputtoomuchemphasisonchildren’sintellectualdevelopment?
Gradually,withoutseeingitclearlyforquiteawhile,IcametorealizethatsomethingisverywrongwiththewayAmericanwom
最新回复
(
0
)