首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
admin
2014-04-23
61
问题
已知ξ
1
,ξ
2
,…,ξ
r
(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
选项
A、α
1
=一ξ
2
一ξ
3
一…一ξ
r
,α
2
=ξ
1
一ξ
3
一ξ
4
一…一ξ
r
,α
3
=ξ
1
+ξ
2
一ξ
4
一…一ξ
r
,…,α
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
B、β
1
=一ξ
2
+ξ
3
+…+ξ
r
,β2=ξ
1
+ξ
3
+ξ
4
+…+ξ
r
,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…,β
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
C、ξ
1
,ξ
2
,…,ξ
r
的一个等价向量组.
D、ξ
1
,ξ
2
,…,ξ
r
的一个等秩向量组.
答案
B
解析
β
1
=ξ
2
+ξ
3
+…+ξ
r
.β
2
=ξ
1
+ξ
3
+…+ξ
r
.β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,β
r
=ξ
1
+ξ
2
+…+}ξ
r-1
是Ax=0的基础解系.因①由解的性质知,Aβ
i
=A(ξ
1
+ξ
2
+…+ξ
i-1
+ξ
i+1
+…+ξ
r
)=0,故β
i
均是Ax=0的解向量.
②向量个数为r=n一r(A),与原基础解系向量个数一样多.
③因
由ξ
1
,ξ
2
,…,ξ
r
线性无关及r≥3,有
故β
1
,β
2
,…,β
r
线性无关,则是Ax=0的基础解系,故应选B.另外对A,当r=3时,α
1
=一ξ
2
一ξ
3
,α
2
=ξ
1
一ξ
3
,α
3
=ξ
1
+ξ
2
.因α
1
一α
1
+α
3
=一ξ
2
一ξ
3
一(ξ
1
一ξ
3
)+ξ
1
+ξ
2
=0,α
1
,α
2
,α
3
线性相关,故A中α
1
,α
2
,…,α
r
,不是Ax=0的基础解系.对C,与ξ
1
,ξ
2
,…,ξ
r
等价的向量组,向量组个数可以超过r个(即与ξ
1
,ξ
2
,…,ξ
r
,等价的向量组可能线性相关).对D,与ξ
1
,ξ
2
,…,ξ
r
等秩向量组可能不是Ax=0的解向量,且个数也可以超过r,故A,C.D均不成寺.
转载请注明原文地址:https://kaotiyun.com/show/GA54777K
0
考研数学一
相关试题推荐
求下列向量组的秩,并求一个最大无关组:
设向量组a1,a2,a3,线性无关,判断向量组b1,b2,b3的线性相关性:b1=a1+2a2+3a3,b2=2a1+2a2+4a3,b3=3a1+a2+3a3.
举例说明下列各命题是错误的:若有不全为0的数λ1,λ2,…,λm,使λ1a1+…+λmam+λ1b1+…+λmbm=0成立,则a1,a2,…,am线性相关,b1,b2,…,bm亦线性相关.
设(Ⅰ)求常数a,b,c;(Ⅱ)判断A是否可相似对角化,若A可相似对角化,则求可逆阵P,使得P-1AP为对角阵,反之说明理由。
设曲线L:y=f(x)≥0(x≥0),其中f(x)连续可导,P(x,y)为曲线L上任意一点,过点P的切线在y轴上的截距与过点P的法线在x轴上的截距相等,又曲线经过点M0(1,1),求该曲线方程.
曲线的斜渐近线为________________.
y=y(x)(x>0)是微分方程xy′-6y=﹣6满足y()=10的解.P为曲线y=y(x)上的一点,曲线y=y(x)在点P的法线在y轴上的截距为IP,为使IP最小,求P的坐标.
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3,(Ⅰ)证明:矩阵A可相似对角化;(Ⅱ)设P=(α1,α2,α3)=,求A100.
已知二次型f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是________.
曲面x2+2y2+3z2=1的切平面与三个坐标平面围成的有限区域的体积的最小值为________.
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)