首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
admin
2014-04-23
89
问题
已知ξ
1
,ξ
2
,…,ξ
r
(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是 ( )
选项
A、α
1
=一ξ
2
一ξ
3
一…一ξ
r
,α
2
=ξ
1
一ξ
3
一ξ
4
一…一ξ
r
,α
3
=ξ
1
+ξ
2
一ξ
4
一…一ξ
r
,…,α
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
B、β
1
=一ξ
2
+ξ
3
+…+ξ
r
,β2=ξ
1
+ξ
3
+ξ
4
+…+ξ
r
,β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,…,β
r
=ξ
1
+ξ
2
+…+ξ
r-1
.
C、ξ
1
,ξ
2
,…,ξ
r
的一个等价向量组.
D、ξ
1
,ξ
2
,…,ξ
r
的一个等秩向量组.
答案
B
解析
β
1
=ξ
2
+ξ
3
+…+ξ
r
.β
2
=ξ
1
+ξ
3
+…+ξ
r
.β
3
=ξ
1
+ξ
2
+ξ
4
+…+ξ
r
,β
r
=ξ
1
+ξ
2
+…+}ξ
r-1
是Ax=0的基础解系.因①由解的性质知,Aβ
i
=A(ξ
1
+ξ
2
+…+ξ
i-1
+ξ
i+1
+…+ξ
r
)=0,故β
i
均是Ax=0的解向量.
②向量个数为r=n一r(A),与原基础解系向量个数一样多.
③因
由ξ
1
,ξ
2
,…,ξ
r
线性无关及r≥3,有
故β
1
,β
2
,…,β
r
线性无关,则是Ax=0的基础解系,故应选B.另外对A,当r=3时,α
1
=一ξ
2
一ξ
3
,α
2
=ξ
1
一ξ
3
,α
3
=ξ
1
+ξ
2
.因α
1
一α
1
+α
3
=一ξ
2
一ξ
3
一(ξ
1
一ξ
3
)+ξ
1
+ξ
2
=0,α
1
,α
2
,α
3
线性相关,故A中α
1
,α
2
,…,α
r
,不是Ax=0的基础解系.对C,与ξ
1
,ξ
2
,…,ξ
r
等价的向量组,向量组个数可以超过r个(即与ξ
1
,ξ
2
,…,ξ
r
,等价的向量组可能线性相关).对D,与ξ
1
,ξ
2
,…,ξ
r
等秩向量组可能不是Ax=0的解向量,且个数也可以超过r,故A,C.D均不成寺.
转载请注明原文地址:https://kaotiyun.com/show/GA54777K
0
考研数学一
相关试题推荐
过点(-1,2,3)且垂直于直线x/4=y/5=z/6并平行于平面7x+8y+9z+10=0的直线方程是()
设f(x)二阶可导,且f(0)=0,f(1)=1,.(Ⅰ)证明:存在c∈(0,1),使得f(c)=c;(Ⅱ)证明:存在ξ∈(0,1),使得f"(ξ)=1f’(ξ).
[*]
设z=f(x,y)在有界闭区域D上二阶连续可偏导,且在D内有则下列正确的是().
设函数f(x)=ax-b㏑x(a>0)有两个零点,则b/a的取值范围是()
设A为3阶矩阵,其特征值为λ1=λ2=-1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P=(α1-α3,α2+α3,α3),则P-1(A+2E)*P=().
设函数y=y(x)由参数方程确定,求曲线y=y(x)为凹时,x的取值范围。
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设f(x)在(0,+∞)内可导,下述论断正确的是()
随机试题
律师可能构成的犯罪有:________;________;________;________;________。
设f(x)=e—x,则=().
下列不属于基底节的是
下列哪项与羊水过多无关
A.吗啡B.可乐定C.左甲状腺素钠D.洛伐他汀E.红霉素老年患者服用后,易导致嗜睡、心动过缓、直立性低血压的药物是
关于敲诈勒索罪的威胁与抢劫罪的威胁描述,下列哪些是正确的?()
大型建设工程项目总进度纲要的内容之一是()。
3名学生和2名老师站成一排照相,2名老师必须相邻且都不在边上的不同排法共有()种。
以下Case语句中错误的是_________。
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouares
最新回复
(
0
)