首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量为ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:A2是数量阵.
已知A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量为ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:A2是数量阵.
admin
2019-01-24
57
问题
已知A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
=-2对应的特征向量为ξ
3
.
(Ⅰ)问ξ
1
+ξ
2
是否是A的特征向量?说明理由;
(Ⅱ)ξ
2
+ξ
3
是否是A的特征向量?说明理由;
(Ⅲ)证明:A
2
是数量阵.
选项
答案
(Ⅰ)因已知Aξ
1
=2ξ
1
,Aξ
2
=2ξ
2
,故A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=2ξ
1
+2ξ
2
=2(ξ
1
+ξ
2
), 故ξ
1
+ξ
2
仍是A对应于λ
1
=λ
2
=2的特征向量. (Ⅱ)ξ
2
+ξ
3
不是A的特征向量.假设是,设其对应的特征值为μ,则有 A(ξ
2
+ξ
3
)=μ(ξ
2
+ξ
3
), 得 2ξ
2
-2ξ
3
-μξ
2
-μξ
3
=(2-μ)ξ
2
-(2+μ)ξ
3
=0, 因2-μ和2+μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾,故ξ
2
+ξ
3
不是A的特征向量. (Ⅲ)因A有特征值λ
1
=λ
2
=2,λ
3
=-2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
,ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E, 即证A
2
是数量阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/DSM4777K
0
考研数学一
相关试题推荐
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
设0<x1<1,xn+1=(n=1,2,…).求证:{xn}收敛,并求其极限.
设f(x)是满足的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
判断级数的敛散性.
设的三个解,求其通解.
判断级数的敛散性.
微分方程y’一xe-y+=0的通解为_________.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
行列式D==_______.
随机试题
以下除哪项以外,均为癫狂的病因
下列属于子宫输卵管造影禁忌证的是
决定能否行烤瓷桥修复时应考虑的因素,除了若右下7缺损3/4,死髓牙,未做根管治疗,根长、大,牙槽骨条件好,则应做哪种处理
A.蠲痹汤B.三痹汤C.独活寄生汤D.六味地黄丸E.虎潜丸
下列关于非银行金融机构的说法错误的是()。
下列说法中正确的是()。
列举两种利用计算机技术和互联网作为教学手段展开美术教学的方式。
将4个不同的小球放入甲、乙、丙、丁4个盒子中,恰有1个空盒的概率为()。
Theword"outsource"(Paragraph1)maybebestreplacedbyJamesQ.WilsonsupportsMaryEberstadt’snewbookbecause
PASSAGETHREEInwhatwaydoesWallStreetdistorttheeconomy?
最新回复
(
0
)