首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: α1,α2,…,αn-1ξ1线性无关。
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明: α1,α2,…,αn-1ξ1线性无关。
admin
2018-02-07
75
问题
设向量α
1
,α
2
,…,α
n-1
是n一1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…,α
n-1
均正交的n维非零列向量。证明:
α
1
,α
2
,…,α
n-1
ξ
1
线性无关。
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+k
0
ξ
1
=0,两边取转置得 k
1
α
1
T
+k
2
α
2
T
+…+k
n-1
α
n-1
T
+k
0
ξ
1
T
=0, 上式两端同时右乘ξ
1
得 k
1
α
1
T
ξ
1
+k
2
α
2
T
ξ
1
+…+k
n-1
α
n-1
T
ξ
1
+k
0
ξ
1
T
ξ
1
=0, 注意到α
i
T
ξ
1
(i=1,2,…,n一1),所以k
0
ξ
1
T
ξ
1
=0。由ξ
1
≠0可得ξ
1
T
ξ
1
≠0,于是k
0
=0,从而 有k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0。 又因为α
1
,α
2
,…,α
n-1
线性无关,所以k
1
=k
2
=…=k
n-1
=k
0
=0,故α
1
,α
2
,…,α
n-1
,ξ
1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/DXk4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
证明曲线有位于同一直线上的三个拐点.
设,证明fˊ(x)在点x=0处连续.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
随机试题
颜真卿的《祭侄文稿》的字体属于()。
下列关于民事诉讼与仲裁关系的处理,哪些是正确的?()
房屋采暖设备中,膨胀水箱是用来容纳受热后管内的膨胀水和排出水中气体的,它一般放置在( )。
“教育一定要成为一种学业,否则无所希望”,“教育的方法必须成为一种科学”。“否则决不能成为一种有系统的学问”。这正是()的“教育学”超出他的前人和同代人的地方。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
对中国31个省市自治区的商人信任度的调查结果表明,一半本地人都认为本地人值得信任。如北京人为北京人打出的可信任度分数是57.9,而为天津人打出的分数是15。有一个地方例外,就是H省人自己并不信赖H省人。以下陈述如果为真,除了哪项之外,都能对上述的例外提供合
设f(x)=,在x=1处可微,则a=________,b=________.
以下叙述中错误的是
Earthquakesoftenhappennearvolcanoes,butthisisnotalwaystrue.Thecentersofsomeare【L1】______.Thebottomoftheseas
Researchershaveestablishedthatwhenpeoplearementallyengaged,biochemicalchangesoccurinthebrainthatallowittoact
最新回复
(
0
)