首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
admin
2016-10-20
59
问题
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
选项
答案
设A的特征值是λ
1
,λ
2
,λ
3
,相应的特征向量是α
1
,α
2
,α
3
.因为α
1
,α
2
,α
3
已两两正交,将其单位化为γ
1
,γ
2
,γ
3
,则γ
1
,γ
2
,γ
3
仍是A的特征向量,且P=(γ
1
,γ
2
,γ
3
)是正交矩阵,并有 [*] 从而由A=PAP
-1
=PAP
T
,得A
T
=(PAP
T
)
T
=(P
T
)
T
A
T
P
T
=PAP
T
=A,即A是对称矩阵.
解析
非零正交向量组是线性无关的,故A有3个线性无关的特征向量,即A可以对角化,并且可以用正交变换化为对角形.
转载请注明原文地址:https://kaotiyun.com/show/DYT4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设有一力场,场力的大小与作用点与z轴的距离成反比(比例系数为k),方向垂直于z轴并且指向z轴,试求一质点沿圆弧x=cost,y=1,z=sint从点(1,1,0)依t增加的方向移动到点(0,1,1)时场力所做的功.
已知三角形三个顶点坐标是A(2,-1,3),B(1,2,3),C(0,1,4),求△ABC的面积.
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格能使其获得总利润最大?最大利润为多少?
随机试题
从信息加工角度对问题的描述。
ESP发出平衡纠偏指令,过度转向产生向理想轨迹曲线_______的偏离倾向。
铣削蜗轮时,铣刀轴线应落在齿坯对称平面内。()
根据《药品流通监督管理办法》,药品生产、经营企业对销售人员的管理错误的是()。
甲公司通过在证券交易所的交易,于2006年1月3日持有乙上市公司公开发行股票的5%,回答下列问题:2006年3月1日,甲公司与丙公司通过协议,共同持有乙公司公开发行股票的30%,甲公司继续在证券交易所收购乙公司的股票,甲公司应完成下列工作:()
输入动物、动物产品和其他检疫物向( )检验检疫机构报检由口岸检验检疫机构实施检疫。
混凝土的优点有()。
下列不属于常见的物业租赁管理模式的是()
腰围男性>94cm,女性>80cm,可诊断为向心性肥胖。()
Whatisthepassagemainlyabout?ItcanbeinferredfromthepassagethatAmericanindustries______.
最新回复
(
0
)