首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组。则( )正确.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组。则( )正确.
admin
2017-11-21
30
问题
设η
1
,η
2
,η
3
为3个n维向量,AX=0是n元齐次方程组。则( )正确.
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n-3,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系.则它也是AX=0的基础解系.
D、如果r(A)=n-3,并且AX=0每个解都可以用η
1
,η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
答案
D
解析
选项A缺少n-r(A)=3的条件.
选项B缺少η
1
,η
2
,η
3
线性无关的条件.
选项C例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系.
要说明选项D的正确,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关.方法如下:
设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是
3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,
则r(η
1
,η
2
,η
3
=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解.
转载请注明原文地址:https://kaotiyun.com/show/DZbD777K
0
考研数学二
相关试题推荐
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?()
四个试点地区农业人口最多的县是()。
2011年江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督和科技人才建设和卫生行风建设,各项工作都取得稳步发展。现将20
研究证明,吸烟所产生的烟雾中的主要成分丙烯醛,是眼睛健康的慢性杀手,而橄榄油提取物羟基酪醇,能有效减缓这个“慢性杀手"给眼睛带来的伤害,由此得出结论,常吃橄榄油能够让吸烟者眼睛远离伤害。以下如果为真,下列哪项最能支持上述论证?()
民谚有“础润而雨”的说法,作为劳动人民千百年来宝贵劳作经验的总结,它的主要科学依据体现在()的变化通过“础润”的形式表现出来,从而预示着天气的变化。
能直接证明门捷列夫元素周期表理论正确的是(,)。
若x、y、z是三个连续的负整数,并且x>y>z,则下列表达式中属于正奇数的是:
计算二重积分[cosx2siny2+sin(x+y)]dσ,其中D={(x,y)|x2+y2≤a2,常数a>0}.
求微分方程满足初始条件y(0)=y’(0)=0的特解,其中常数k>0。
微分方程y’’一4y’=2cos22x的特解可设为________.
随机试题
根据管理需要和具体情况,企业可以设计哪些类型的辅助会计制度()
标志中国延续两千余年封建帝制覆灭的事件是
引起ITP病人出血的机制中,下列哪项不可能
某规模化猪场5~8周龄的保育仔猪出现发病,病猪发热、食欲减退;呼吸困难、咳嗽;关节肿胀、跛行、颤抖;共济失调、可视黏膜发绀,严重者死亡。临死前侧卧或四肢呈划水样。剖检可见多发性纤维素性或浆液性脑膜炎、胸膜炎、心肌炎、腹膜炎、关节炎、间质性肺炎、心包炎,形成
表面活性剂在药剂方面常用作
投资与消费虽然同属于现代社会中重要的经济活动,但具有自身的运动规律和作用机制,投资的一般特性包括:()。
订立合同应该( )。
信用证不准分批,又没有数量增减条款,则实际装运数量允许有5%的增减幅度。()
新中国成立以后,我国政府制定了“两弹一星”的战略决策,这一战略目标的实现是在()。
A、Aperformance.B、Apopgroup.C、Thenameofatheater.D、Thenameofadancer.B
最新回复
(
0
)