首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QX,二次型f(χ1,χ2,χ3)=XTAX化为标准形.
设二次型f(χ1,χ2,χ3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QX,二次型f(χ1,χ2,χ3)=XTAX化为标准形.
admin
2014-12-09
115
问题
设二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
-y
2
2
-y
3
2
,又A
*
α=α,其中α=(1,1,-1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QX,二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX化为标准形.
选项
答案
(Ⅰ)显然A的特征值为λ
1
=2,λ
2
=1,λ
3
=-1,|A |=2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=-2,μ
3
=-2.由A
*
α得AA
*
α=Aα,即Aα=2α,即α=(1,1,-1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量. 令ξ=(χ
1
,χ
2
,χ
3
)
T
为矩阵A的对应于特征值λ
2
=-1,λ
3
=-1的特征向量,因为A为实对称矩阵,所以α
T
ξ=0,即χ
1
+χ
2
-χ
3
=0,于是λ
2
=-1,λ
3
=-1对应的线性无关的特征向量为 [*].
解析
转载请注明原文地址:https://kaotiyun.com/show/wAbD777K
0
考研数学二
相关试题推荐
“只有天在上,更无山与齐。举头红日近,回首白云低”描写的是()。
经济全球化是指跨国商品与服务贸易及资本流动规模和形式的增加,以及技术的广泛迅速传播使世界各国经济的相互依赖性增强。
市场经济主要具有()等特征。
定律具有普适性,不受文化、宗教、地域等因素的限制。壶如果没有底或者开口比其他部位开敞,我们就不认为这是传统意义上的壶。物理学定律决定了实用型工艺品的一般形式,“它们”具有一些基本的样式,其功能也只能在一定限度内有所变化。这里的“它们”是指()。
根据最近一项调查显示,近年来在某市外资企业高收入(指合法收入为年薪12万元以上)人群中,外国留学归来的人(简称“海归派”)数占60%以上,这充分说明国内大学毕业的人(简称“本土派”)在该市外资企业中获得高工资极为困难。以下哪项,如果为真,最能加强上述结论?
有确凿的证据显示,偏头痛(严重的周期性头痛)不是由于心理上的原因引起的,而是完全由生理上的原因所致,然而,数项研究结果表明那些因为偏头痛受到专业化治疗的人患有标准心理尺度的焦虑症的比率比那些没经专业治疗的偏头痛患者的高。下面哪一项如果正确,最能有助于解决上
设,问a,b,c为何值时,矩阵方程AX=B有解,有解时求全部解.
微分方程y′=的通解为_______.
设f有一阶连续的偏导数,且f(χ+y,χ-y)=4(χ2-χy-y2),则χf′χ(χ,y)+yf′y(χ,y)为().
设抛物线y=aχ+bχ+c过原点,当0≤χ≤1时,y≥0,又已知该抛物线与χ轴及直线χ=1所围图形的面积为,试确定a,b,c使此图形绕χ轴旋转一周而成的旋转体的体积V最小.
随机试题
数据仓库的特点包括
A.普通菌毛B.荚膜C.芽胞D.鞭毛E.质粒与细菌黏附作用有关的是
建立客户选择与授信制度应采取的措施包括()。
截至2×12年3月31日,A上市公司、B公司对C债权人负债金额共计8000万元(均为其他应付款),其中A公司负债2000万元,B公司负债6000万元,A公司为B公司债务承担连带担保责任。B公司为A公司的子公司,A公司持有其80%股权。2×12年4月10日
下列句子中,属于兼语句的有()。
社会工作者调动服务对象自身的能力和资源,发挥服务对象的潜在能力,促使服务对象发生有效改变。这是社会工作者扮演的()角色。
Thenewsaboutvitaminskeepsgettingworse.Manystudiespublishedinthelastfewyearsshowsthatavarietyofpopularsupple
当发现网络安全遭到破坏时,所能采取的基本行动方案有:保护方式和【】。
A、每个人都有缺点B、要合理利用时间C、要善于发挥自己的优势D、缺点有时也会变成优点C
EnglishforBusinessStudiesisacourseforupper-intermediateandadvancedlevelstudentswhoneedtobeabletounderstandan
最新回复
(
0
)