首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
admin
2017-10-19
34
问题
设一部机器一天内发生故障的概率为
,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
选项
答案
用X表示5天中发生故障的天数,则 [*] 以Y表示获利,则 [*] 则E(Y)=10P(X=0)+5P(X=1)一2[P(X=3)+P(X=4)+P(X=5)]=10×0.328+5×0.410一2×0.057=5.216(万元)
解析
转载请注明原文地址:https://kaotiyun.com/show/DiH4777K
0
考研数学三
相关试题推荐
设随机变量X的概率密度为对X进行独立重复的观测.直到第2个大于3的观测值出现时停止,记Y为观测次数.(I)求y的概率分布;(Ⅱ)求EY.
计算二重积分(x+y)dxdy,其中D={(x,y)|x2+y2≤2,y≥x2).
已知α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T,(I)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,α2,α3,α4可表示任
设随机变量X1与X2相互独立,且X1~N(0,1),X2服从的指数分布.(I)求X=X12的概率密度;(11)设Y=X+X2,求EY,DY.
求二元函数在区域D={(x,y)|x≥0,y≥0}上的最大值与最小值.
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则=____________·
将抛物线y=x2一x与x轴及直线x=c(c>1)所围成平面图形绕x轴旋转一周,所得旋转体的体积Vx等于弦op(p为抛物线与直线x=c的交点)绕x轴旋转所得锥体的体积V锥,则c的值为_________.
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.(I)求a1,2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3,α4的一
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
由方程确定的隐函数z=z(x,y)在点(1,0,一1)处的微分为dz=__________。
随机试题
下列关于血管性出血性疾病的描述,正确的是
A.squamouscarcinomaB.ADenocareinomaC.alveolarcellcarcinomaD.smallcelllungcarcinomaE.Largecelllungcarcinoma病理分型属于腺
除了慢性进行性膀胱炎症状外,诊断泌尿系结核的根据是
以下哪项为瓜藤缠的主要发病特点:
下列不是深反射检查的是
比表面积表示堆密度表示
保险经纪机构向中国保监会申请换发许可证,应当提交申请前( )的资产负债表和利润表。
中国公民张先生为国内某企业高级技术人员,2017年1~12月取得的收入情况如下:(1)每月取得工薪收入8400元。(2)3月转让其2013年购买的三居室精装修房屋一套,售价230万元,不含增值税,转让过程中支付可在税前扣除的相关税费13.8万元。该套房
近年来,很多人才涌往北京、上海、广州等大城市,但却有一些大城市的白领在逃出去,你怎么看?
A、Becauseitneedsgovernment’ssupport.B、Becauseit’shardtoacquirethetechnology.C、Becauseit’snoteasytomakeaprofit
最新回复
(
0
)