首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(0,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(0,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
admin
2018-06-27
37
问题
设f(x)在(0,+∞)二阶可导且f(x),f’’(x)在(0,+∞)上有界,求证:f’(x)在(0,+∞)上有界.
选项
答案
按条件,联系f(x),f’’(x)与f’(x)的是带拉格朗日余项的一阶泰勒公式[*]>0,h>0有 f(x+h)=f(x)+f’(x)h+[*]f’’(ξ)h
2
, 其中ξ∈(x,x+h).特别是,取h=1,ξ∈(x,x+1),有 f(x+1)=f(x)+f’(x)+[*]f’’(ξ),即f’(x)=f(x+1)-f(x)-[*]f’’(ξ). 由题设,|f(x)|≤M
0
,|f’’(x)|≤M
2
([*]∈(0,+∞)),M
0
,M
2
为常数,于是有 |f’(x)|≤|f(x+1)|+|f(x)|+[*] 即f’(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dik4777K
0
考研数学二
相关试题推荐
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2).
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
设试求:函数f(a)的定义域;
设其中f(s,t)有连续的二阶偏导数.求
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数:(Ⅰ)(Ⅱ)∫0χ(et-1-t)2dt.
随机试题
A.支气管哮喘B.喘息型慢性支气管炎C.支气管肺癌D.肺炎支原体肺炎E.克雷伯杆菌肺炎刺激性咳嗽,伴气急、痰中带血,支气管解痉药效果欠佳。可见于
切点在矢状面边缘运动的上缘是
A、前牙区为主,尤其是下前牙区最为显著,也可波及全口的牙龈B、前牙区的唇侧牙龈C、可发生于少数牙或全口牙牙龈,以前牙区为重D、单个的牙间乳头E、全口牙龈,以前牙区较重,只发生于有牙区慢性龈炎的主要累及病变区
政府投资主管部门在对政府投资项目作出审批决定时,审查重点不包括()。
在建筑单位工程概算中应包括()。
2013年1月1日A公司从非关联方取得B公司80%的股权,合并对价为一项可供出售金融资产和一项无形资产(土地使用权),可供出售金融资产公允价值为6200万元,账面价值为5500万元(包括成本5000万元,公允价值变动500万元),无形资产账面原值为3500
2015年4月9日,甲公司签发一张出票后定期付款的银行承兑汇票,付款期限为2个月,收款人为乙公司,金额为40万元。4月22日,甲公司开户银行P银行进行了承兑。5月10日,丙公司作为保证人在票据上记载有关事项并签章,但未记载被保证人名称。6月12日,乙公司通
2012年建材工业增加值同比增长11.5%,增速回落8个百分点,占全国工业增加值的6.6%。全年水泥产量21.8亿吨、同比增长7.4%,陶瓷砖92亿平方米、同比增长9.4%,天然花岗岩石材4.1亿平方米、同比增长27.2%。平板玻璃7.1亿重量箱、同比下降
随着安徽省社会经济的飞速发展,始建于1972年的骆岗机场已经不能适应越来越多的旅客出行需要,于2013年5月整体搬迁到新桥机场。新桥机场周边有3条重要高速,2条国道,交通非常便捷。意外的是,搬迁到新机场后,年旅客吞吐量反而与之前相比裹足不前,甚至下滑,从2
链表不具有的特点是
最新回复
(
0
)