首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
设在点x=0处二阶导数存在,则其中的常数a,b,c分别是
admin
2014-02-05
76
问题
设
在点x=0处二阶导数存在,则其中的常数a,b,c分别是
选项
A、a=一2,b=2,c=1.
B、a=2,b=一2,c=1.
C、a=一2,b=1,c=2.
D、a=2,b=1,c=一2.
答案
A
解析
本题主要考查分段函数在分界点处具有高阶导数时应满足的条件.为了处理更一般的问题,我们考虑分段函数
其中f
1
(x)和f
2
(x)分别在较大的区间(x
0
—δ,+∞)和(一∞,x
0
+δ)(δ>0是一个常数)中具有任意阶导数,则f(x)在分界点x=x
0
具有k阶导数的充分必要条件是f
1
(x)和f
2
(x)有相同的泰勒公式:f
1
(x)=f
2
(x)=a
0
+a
1
(x一x
0
)+a
2
(x—x
0
)
2
+…+a
k
(x一x
0
)
k
+o((x一x
0
)
k
).注意,在f(x)的定义中,分界点x
0
也可以属于f
1
(x)所在区问,结论是完全一样的.把上述一般结论用于本题,取x
0
=0,k=2,f
1
(x)=ax
2
+bx+c,f
2
(x)=cos2x+2sinx,因f
2
(x)=1一
+a(x
2
)+2[x+a(x
2
)]=1+2x一2x
2
+o(x
2
),所以a,b,c应分别是a=一2,b=2,c=1,这表明结沦A正确.故选A.
【分析二】首先要求f(x)在x=0连续,即要求
即[cosx+2sinx]|
x=0
=[ax
2
+bx+c]|
x=0
=0,得c=1.这表明C,D不正确.当c=1时,f(x)可写成
其次要求f
’
(0)
,即f
’
一(0)=f
+
’
(0),即(cosx+2sinx)
-
’
|
x=0
=((ax
2
+bx+c)
+
’
|
x=0
=0=b,即b=2.于是B不正确.因此只能是A正确.故选A.
转载请注明原文地址:https://kaotiyun.com/show/LT34777K
0
考研数学二
相关试题推荐
(1990年)求函数在区间[e,e2]上的最大值.
(89年)设A和B都是n×n矩阵,则必有【】
[2004年]设n阶矩阵求A的特征值和特征向量;
(06年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y愤怒(χ0,y0)≠0,已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
(14年)设函数f(χ)具有2阶导数,g(χ)=f(0)(1-χ)+f(1)χ,则在区间[0,1]上【】
计算定积分
求不定积分
设X1,X2,…,Xn为来自总体X~N(μ,σ2)的简单随机样本,且利用Y1,Y2,…,Yn,求σ的矩估计量
设则a=________.
利用极限存在准则证明:问本题能否用极限的四则运算法则求解?
随机试题
我国义务教育管理权属于()
消渴除了肺痨、水肿、中风等并发症外,还可有哪些并发症
合法租赁合同的终止一般有()。
逻辑式F=A+B+c可变换为()。
国家开发银行的资金来源主要()。
根据《注册建造师管理规定》,注册机关对申请注册建造师的申请人不予注册的情形为()。
建立薪酬体系要以()为基础。
面试的开始阶段应从()发问,从而营造和谐的面试气氛。
社会福利不属于社会保障的范畴。()
A.untilB.learningC.whenPhrases:A.doesnotmature【T7】______abouttheageoftwoB.remember【T8】______towalkC.【T9】____
最新回复
(
0
)