首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等;(2)举一个2阶方阵的例子说明(1)的逆命题不成立;(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等;(2)举一个2阶方阵的例子说明(1)的逆命题不成立;(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
admin
2017-04-11
91
问题
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等;(2)举一个2阶方阵的例子说明(1)的逆命题不成立;(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
选项
答案
(1)若A~B,那么存在可逆矩阵P,使P
一1
AP=B,故|λE一B|=|λE—P
一1
AP|=|P
一1
λEP—P
一1
AP|=|P
一1
(λE一A)P|=|P
一1
||λE-A||P|=|P
一1
||P||λE—A|=|λE-A|,即A,B的特征多项式相等. (2)令[*],那么|λE—A|=λ
2
=|λE—B|,但A,B不相似.否则,存在可逆矩阵P,使P
一1
AP=B=O.从而A=POP
一1
=O,矛盾. (3)由A,B均为实对称矩阵知,A,B均相似于对角阵.若A,B的特征多项式相等,记特征多项式的根为λ
1
,…,λ
n
,则有[*]即存在可逆矩阵P,Q使[*]于是(PQ
一1
)
一1
A(PQ
一1
)=B.由PQ
一1
为可逆矩阵知,A与B相似.
解析
本题主要考查同阶方阵相似的定义,相似的必要非充分条件及两个实对称矩阵相似的充分必要条件.
转载请注明原文地址:https://kaotiyun.com/show/Dtt4777K
0
考研数学二
相关试题推荐
求曲线x2+y2=1与y2=x所围成的两个图形中较小的一块分别绕x轴、y轴旋转所产生的立体的体积。
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
设D是以点O(0,0),A(1,2)和B(2,1)为顶点的三角形区域,求xdxdy。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
验证y=C1x5+lnx(C1,C2是任意常数)是方程x2y"-3xy’-5y=x2lnx的通解。
作x2+(y-3)2=1的图形,并求出两个y是x的函数的单值支的显函数关系.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
A、 B、 C、 D、 DC也明显不对,因为“无穷小无穷大”是未定型,极限可能存在也可能不存在.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
随机试题
简述使用闸板防喷器的注意事项。
国家产生的社会根源是()
A.颊黏膜B.舌下阜C.舌下襞D.舌根舌下腺大管开口于()
引起上消化道出血最常见的原因是
E公司只产销一种甲产品,甲产品只消耗乙材料。2017年第4季度按定期预算法编制2018年的企业预算,部分预算资料如下:资料一:乙材料2018年年初的预计结存量为2000千克,各季度末乙材料的预计结存量数据如下表所示:每季度乙材料的购货款于当季支付4
某企业出售一栋建筑物,账面原价2100000元,已提折旧210000元,出售时发生清理费用21000元,出售价格2058000元。不考虑相关税费,该企业出售此建筑物发生的净损益为()元。
甲上市公司根据合同于2013年3月19日开出面值600万元,5个月到期的商业汇票,交付给乙公司支付材料款,A保证人为甲公司提供保证,并在票据正面注明保证字样和保证人签章。乙收到票据后按期向承兑人提示承兑。并于2013年6月9日将该票据背书转让给丙公司,丙公
一般资料:求助者,女性,27岁,公司职员。案例介绍:求助者不合群,经常和父母、同事、客户发生矛盾,人际关系紧张。最近又因琐事与同事发生矛盾,很生气,也为此痛苦,主动来心理咨询。下面是心理咨询师与求助者的一段咨询谈话。心理咨询师:你认
计算机病毒是指()。
ThequestforwisdomisasoldasSocrates,butit’salsoanup-to-the-minuteeconomicindicator.Acontrarianone:whenthings
最新回复
(
0
)