首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使.
admin
2016-01-15
44
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ξ,使
.
选项
答案
(1)利用反证法.假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔中值定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立. 接着再对g’(x)在区间[ξ,ξ]上应用罗尔中值定理,可知存在ξ∈(ξ,ξ),使得g"(ξ)=0成立,这与题设条件g"(x)≠0矛盾,因此在开区间(a,b)内,g(x)≠0. (2)构造函数F(x)=f(x)g’(x)一g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0.根据罗尔中值定理可知,存在点ξ∈(a,b),使得F’(ξ)=0. 即 f(ξ)g"(ξ)—f"(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/EJw4777K
0
考研数学一
相关试题推荐
设y=y(x)由x2y2+y=1(y>0)确定,求函数y=y(x)的极值.
设3阶矩阵已知r(AB)<r(A),r(AB)<r(B),求a,b的值与r(AB).
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设a是n维单位列向量,A=E-aaT.证明:r(A)<n.
交换积分次序并计算.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
设cosx-1=xsinα(x),其中|α(x)|<π/2,则当x→0时,α(x)是().
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
以下关于商品入库作业中的单货核对环节中,说法错误的是()
男,45岁,心慌、乏力、记忆力不好,曾有癫痫样发作4次,晨起床后晕倒,神志模糊,经静脉输注葡萄糖溶液后症状消失,应考虑为
请根据修订后的《刑事诉讼法》的规定,判断下列关于刑罚执行的说法哪些是错误的?()
规划研究要在国家宏观经济发展战略方针指导下,充分考虑(),提出地区或行业的发展目标和政策。
同时履行抗辩权和后履行抗辩权的适用条件中完全一致的是( )。
ArichAmericanwenttoParisandboughtapicturepaintedbyaFrenchartist.TheAmericanthoughtthepicturetobeveryfine
2021年10月,国务院发布的《2030年前碳达峰行动方案》指出,要重点实施“碳达峰十大行动”。下列属于“碳达峰十大行动”的有几项?()①能源绿色低碳转型行动②交通运输绿色低碳行动③碳汇能力巩固提升行动
下列没有语病的一句是()。
浮点加减运算结果满足()时,应作“机器零”处理。
1/One与上面两题一样,本题答案在第三个话轮中男士第三句话的最后部分:...oneadditionalre-port。这种信息和答案集中在一句话的情况在实考中较为少见,但对考生听音辨音、瞬间记忆的能力要求相当高,可以很好地锻炼考生的听力理解能力。
最新回复
(
0
)