首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
admin
2021-11-25
71
问题
求二元函数z=f(x,y)=x
2
y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
选项
答案
(1)求f(x,y)在区域D边界上的最值: 在L
1
:y=0(0≤x≤6)上,z=0 在L
2
:x=0(0≤y≤6)上,z=0 在L
3
:y=6-x(0≤x≤6)上,z=-2x
2
(6-x)=2x
3
-12x
2
由[*]=6x
2
-24x=0得x=4,因为f(0,6)=0,f(6,0)=0,f(4,2)=-64,所以f(x,y)在L
3
上最小值为-64,最大值为0. (2)在区域D内,由[*]得驻点为(2,1) [*] 因为AC-B
2
>0且A<0,所以(2,1)为f(x,y)的极大值点,极大值为f(2,1)=4,故z=f(x,y)在D上的最小值为m=f(4,2)=-6,最大值为M=f(2,1)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/CZy4777K
0
考研数学二
相关试题推荐
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
(Ⅰ)求积分f(t)=(—∞<t<+∞).(Ⅱ)证明f(t)在(—∞,+∞)连续,在t=0不可导.
求函数f(x,y)=e2x(x+y2+2y)的极值。
设实对称矩阵A=要使得A的正,负惯性指数分别为2,1,则a满足的条件是_________.
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
设f(u)具有二阶连续导数,且g(x,y)=
设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为().
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设单位质点在水平面内作直线运动,初速度v|t=0=v0,已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
随机试题
目前常用的企业资源计划的简称是()
种群密度可分为绝对密度和相对密度,也可分为粗密度和______密度。
乳牙萌出的顺序为
具有推动呼吸和血行功能的气是
合同的债务和侵权行为的债务的主要区别是()。
(2013年)根据资源税规定,纳税人既有对外销售应税产品,又有将应税产品用于除连续生产应税产品以外的其他方面的,对自用应税产品,移送时应纳资源税的计税依据是该产品的()。
交警部门隐蔽测速并对司机处罚,谈谈你的看法。
元律规定重大案件不得夜审。这一观点是正确的。 ( )
当时,证明:
WhichofthefollowingstatementsaboutDr.Smallisprobablytrue?
最新回复
(
0
)