首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设: ①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1; ②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2; ③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
假设: ①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1; ②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2; ③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
admin
2019-04-22
90
问题
假设:
①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤e
x
一1;
②平行于y轴的动直线MN与曲线y=f(x)和y=e
x
一1分别相交于点P
1
和P
2
;
③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P
1
P
2
的长度。
求函数y=f(x)的表达式。
选项
答案
由题设可得 ∫
0
x
f(x)dx=e
x
一1一f(x), 两端求导,得 f(x)=e
x
一f
’
(x), 即有 f
’
(x)+f(x)=e
x
。 由一阶线性方程求解公式,得 f(x)=e
-x
[∫e
x
.e
x
dx+C]=Ce
-x
+[*]e
x
。 由f(0)=0得C=[*],因此所求函数为 f(x)=[*](e
x
一e
-x
)。
解析
转载请注明原文地址:https://kaotiyun.com/show/ERV4777K
0
考研数学二
相关试题推荐
设方阵A1与B1合同,A2与B2合同,证明:合同。
设α>0,β>0为任意正数,当χ→∞时将无穷小量:,e-χ按从低阶到高阶的顺序排列.
求由圆x2+y2=2y与抛物线y=x2所围成的平面图形的面积.
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得f(ξ)=∫0ξf(t)dt.
设f(x)=ex-2,求证在区间(0,2)内至少有一点x。,使ex。-2=x。.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为________.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
求不定积分
求极限
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
随机试题
人民法院对行政案件作出变更判决的条件是()。
体内DNA复制与体外PCR反应不同的是
患者,女,51岁。2个月来反复出现夜间入睡时胸骨下段疼痛,性质呈刺痛、烧灼样,有时向后背、胸部放射,坐起或喝水后症状可减轻,偶尔在饱餐后1小时左右发生。口含硝酸甘油无效。既往有高血压、十二指肠溃疡病史,否认糖尿病病史。最可能的诊断是
A、吗啡B、氯丙嗪C、苯巴比妥D、地西泮E、苯妥英钠可控制精神分裂症的药物是()。
村民李桂花中年丧夫,后与邻村赵建伟经人认识,欲打算重新组织家庭,但当地认为妇女再婚为不守妇道,李桂花家里人也众多阻挠,认为李桂花再婚伤风败俗。对此,下列哪些说法可以成立?()
()是独立咨询工程师对银行贷款决策的重要依据。
采用招标方式采购的,自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于15日。()
元曲名家中被称为“曲状元”的是()
在美国与西班牙作战期间,美国海军曾经广为散发海报,招募兵员。当时最有名的一个海军广告是这样说的:美国海军的死亡率比纽约市民还要低。海军的官员就这个广告具体解释说:“根据统计,现在纽约市民的死亡率是每千人有16人,而尽管是战时,美国海军士兵的死亡率也不过每千
A、Itguaranteesfederalinvestmentinschools.B、Itisauniversallawthatappliestoeveryuniversity.C、Itstopsgenderdiscr
最新回复
(
0
)