首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
admin
2017-10-12
62
问题
设α
1
,α
2
,...,α
s
均为n维向量,下列结论不正确的是
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,...,α
s
,线性无关.
B、若α
1
,α
2
,...,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
C、α
1
,α
2
,...,α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
,...,α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
按线性相关定义:若存在不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
则称向量组α
1
,α
2
,...,α
s
线性相关.
因为线性无关等价于齐次方程组只有零解,那么,若k
1
,k
2
,…,k
s
不全为0,则(k
1
,k
2
,…,k
s
)
T
必不
是齐次方程组的解,即必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0.可知(A)是正确的,不应当选.
因为“如果α
1
,α
2
,...,α
s
线性相关,则必有α
1
,α
2
,...,α
s+1
线性相关”,所以,若α
1
,α
2
,...,α
s
中有某两个向量线性相关,则必有α
1
,α
2
,...,α
s
线性相关.那么α
1
,α
2
,...,α
s
线性无关的必要条件是其任一个部分组必线性无关.因此(D)是正确的,不应当选.
转载请注明原文地址:https://kaotiyun.com/show/ESH4777K
0
考研数学三
相关试题推荐
已知则
设总体X—N(μ,0.722),(X1,X2,…,Xn)为X的一个样本,为样本均值,当n≥_____,才能使E[(X一μ)2]≤0.01.
设f(x)在(-∞,+∞)上连续,且证明:(1)若f(x)为偶函数,则F(x)也是偶函数;(2)若f(x)是单调减少函数,则F(x)也是单调减少函数.
设u=ex+y+z,且y,z由方程∫0xdt+ln(1+y)=0及ey+z=e+lnz确定为x的函数,则=________
设二维随机变量(X,Y)的联合密度函数为f(x,y)=则k为().
设X1,X2,…,Xn为来自总体X的简单随机样本,其中E(X)=μ,D(X)=σ2,令U=则ρUV=_______.
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中(I)用正交变换把此二次型化为标准形,并写出所用正交变换;(Ⅱ)若A+kE正定,求k的取值。
已知矩阵有三个线性无关的特征向量,求a的值,并求An
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:(I)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
背景资料: 某水利工程施工招标文件依据《水利水电工程标准施工招标文件》(2009年版)编制。招投标及合同管理过程中发生如下事件: 事件一:评标方法采用综合评估法。投标报价应不高于最高限价7000万元,并不低于最低限价5000万元。 招标文件合同部分关
下面有关SARS冠状病毒特征正确的是
全国计量工作的统一监督管理由非国家法定计量单位废除办法的制定由
国家实行药品不良反应()。
国家正式实施《中华人民共和国合同法》,在()起执行。
现代社会的种种特征对教育系统具有()。
下图给定的是纸盒的外表面,下面哪一项不能由它折叠而成?
常用的发展性常模有()
[*]
A、Theyhavebadrelationshipwithothers.B、Theygooutforawalktoofrequently.C、TheyareaddictedtotheInternet.D、Theys
最新回复
(
0
)