首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是( )。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是( )。
admin
2015-11-16
54
问题
设向量组α
1
,α
2
,α
3
线性无关,则下列向量组中线性无关向量组是( )。
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
-α
1
B、α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
C、α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
D、α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
答案
C
解析
[解题思路] 用线性无关向量组线性表示的向量组的线性相关性的判定常用下述矩阵表示法:
设向量组(Ⅱ):β
1
,…,β
r
能由线性无关向量组(Ⅰ):α
1
,…,α
s
线性表示为
或 [β
1
,…,β
r
]=[α
1
,…,α
s
][g
ij
]
s×r
=[α
1
,…,α
s
]G,
则向量组(Ⅱ)线性无关的充要条件是秩(K)=r(或秩(G)=r)。当r=s时,归结为计算行列式|K|或|G|。如它们不等于0,则向量组(Ⅱ)线性无关;如等于零,向量组(Ⅱ)线性相关。
(参阅《考研数学一常考题型解题方法技巧归纳(第二版)》P310)
解一 对于(A),令β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,β
3
=α
3
-β
1
,则
[α
1
+α
2
,α
2
+α
3
,β
3
=α
3
-β
1
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
1
,
而
故向量组α
1
+α
2
,α
2
+α
3
,α
3
-α
1
线性相关。
对于(B),令β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,β
3
=α
1
+2α
2
+α
3
,则
[α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
2
,
而
故向量组α
1
+α
2
,α
2
+α
3
,α
1
+2α
2
+α
3
线性相关。
对于(C),令β
1
=α
1
+2α
2
,β
2
=2α
2
+3α
3
,β
3
=3α
3
+α
1
,则
[α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
]=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
3
,
而
故向量组α
1
+2α
2
,2α
2
+3α
3
,3α
3
+α
1
线性相关。
对于(D),令β
1
=α
1
+α
2
+α
3
,β
2
=2α
1
-3α
2
+22α
3
,β
3
=3α
1
+5α
2
-5α
3
,则
[α
1
+α
2
+α
3
,2α
1
-3α
2
+22α
3
,3α
1
+5α
2
-5α
3
]
=[α
1
,α
2
,α
3
]
= [α
1
,α
2
,α
3
]G
4
,
而|G
4
|=
=0,故(D)中向量组线性相关,仅(C)入选。
解二 也可用定义判别,对于选项(C),令
k
1
(α
1
+2α
2
)+k
2
(2α
2
+3α
3
)+k
3
(3α
3
+α
1
)=0,
即 (k
1
+k
3
)α
1
+(2k
1
+2k
2
)α
2
+(3k
2
+3k
3
)α
3
=0。
因α
1
,α
2
,α
3
线性无关,故
因该方程组的系数矩阵行列式不等于0,故该方程组只有零解,即k
1
=k
2
=k
3
=0,所以该向量组线性无关,仅(C)入选。
转载请注明原文地址:https://kaotiyun.com/show/ETw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ε,η∈(0,1),使得.
设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
计算n阶行列式=_______.
设某商品需求函数为Q=e-p/4,求需求弹性函数及P=3,P=4,P=5时的需求弹性.
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
设二次型f(x1,x2,x3)=x12+2x1x2+2x22-2x2x3+x32.(1)设f(x1,x2,x3)=0,求x;(2)求二次型f(x1,x2,x3)的规范形.
求微分方程满足初始条件y(1)=0的特解.
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
设f(x)为连续函数,将逐次积分∫01dx∫0xdy∫0yf(z)dz化成定积分的形式为________.
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)