首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值。
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值。
admin
2021-11-25
56
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足
Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值。
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
)得到A的另一个特征值为λ
2
=-1 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/5iy4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
a,b取何值时,方程组有解?
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
设A为n阶矩阵且r(A)=n-1,证明:存在常数k,使得(A*)2=kA*.
从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。
曲线y=(0≤x≤1)绕x轴旋转一周所得的旋转曲面的面积为__________。
椭圆绕x轴旋转一周生成的旋转曲面s的面积=______.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
随机试题
长期从事重金属作业的人应多吃()。
三个R=10Ω的电阻作三角形连接,已知线电流I1=22A,则该三相负载的有功功率P=()。
下列不属于对患有职业病的员工的处理方法的是( )。
方针目标的动态管理最重要的环节是_________。
EDI是通过电子方式,采用(),利用计算机网络进行结构化数据的传输和交换。
“以意逆志”“知人论世”的命题由()最先提出。
某数据库表中有一个地址字段,查找字段最后3个字为“9信箱”的记录,准则是()。
Fromthepassagewelearnthatmandiesinseadisastersmainlybecause______.Wecaninferfromthepassagethat______.
说明:请按照下面的中文提示,以中国学生王小明(男)的身份填写下列×××大学入学申请表格。具体信息如下:出生日期:1975年8月20日联系地址:广州市中山路710号联系电话:020-61006571个人情况说明:本人毕业院校和
Allthewisdomoftheages,allthestoriesthathavedelightedmankindforcenturies,areeasilyandcheaply【C1】______toallof
最新回复
(
0
)