首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值。
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值。
admin
2021-11-25
33
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足
Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值。
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
)得到A的另一个特征值为λ
2
=-1 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/5iy4777K
0
考研数学二
相关试题推荐
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A是m×n矩阵,B是n×m矩阵,则()。
设A是m×n矩阵,且m﹥n,下列命题正确的是()。
下列命题正确的是()。
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设A为m×n阶实矩阵,且r(A)=n,证明:ATA的特征值全大于零。
求极限。
设三角形三边的长分别为a,b,c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设{an}与{bn}为两个数列,下列说法正确的是().
随机试题
恰当地处理学科知识与课程内容的关系意味着要实现()
唾液中除唾液淀粉酶以外,还有
A.血竭面B.牛黄C.罂粟壳D.阿魏E.龟甲属特殊管理药品需专柜存放的中药是
随着宪法理论的发展和各国经济政治形势的发展,世界各国的宪法也发生了巨大的变化。关于当代宪法发展的趋势,下列哪些说法是正确的?()
可以为文件设置的属性的有()。
20l3年6月1日,甲、乙、丙、丁四人决定投资设立一普通合伙企业,并签订了书面合伙协议。合伙协议的部分内容如下:(1)甲以货币出资10万元,乙以其设备折价出资8万元,经其他三人同意,丙以劳务折价出资6万元,丁以货币出资4万元;(2)甲、乙、丙、丁按2:2:
从装有500克浓度为20%的糖水瓶中倒出50克糖水后,再向瓶中倒入50克清水,如果将这个过程作为一次操作,第三次操作完成后,这瓶糖水的浓度变成了()。
给定材料【材料1】1934年,美国发生了一场人类历史上空前未有的黑色风暴,形成一个东西长2400公里、南北宽1440公里、高3400米的巨大风暴带。风暴所经之处,溪水断流,田地龟裂,庄稼枯萎,牲畜渴死,千万人流离失所。调查发现,引发黑色风暴的直
给定资料1.十九大报告总结指出,近几年来“公共文化服务水平不断提高,文艺创作持续繁荣,文化事业和文化产业蓬勃发展,互联网建设管理运用不断完善,全民健身和竞技体育全面发展”。但是,我国公共文化服务总体水平仍然不高,与人民群众快速增长的文化需求还不相
Isanation’sdestinysetbyitsfertilityrates?Japanhastheworld’soldest【C1】______,butJapaneselongevitycan’t【C2】______
最新回复
(
0
)