首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
admin
2021-03-16
34
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三维线性无关的列向量,又
Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
,
(Ⅰ)证明:矩阵A可相似对角化;
(Ⅱ)设P=(α
1
,α
2
,α
3
)=
,求A
100
.
选项
答案
(Ⅰ)令P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P可逆, 由Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
得 (Aα
1
,Aα
2
,Aα
3
)=(α
1
+4α
2
,α
1
+α
2
,3α
3
),即 AP=P[*],或P
-1
AP=[*] 从而A~B, 由|λE-B|=[*]=(λ+1)(λ-3)
2
=0得λ
1
=-1,λ
1
=-1,λ
2
=λ
3
=3, 由3E-B=[*]得 r(3E-B)=1,从而B可相似对角化, 再由A~B得A也可相似对角化. (Ⅱ)由P
-1
AP=[*]=B得A
100
=PB
100
P
-1
, 由-E-B→E+B=[*]得B的属于特征值λ
1
=-1的线性无关的特征向量为β
1
=[*]; 由3E-B→[*]得B的属于特征值λ
2
=λ
3
=3的线性无关的特征向量为β
2
=[*], 令P
0
=[*],则P
0
-1
BP
0
=[*], 从而B
100
=[*], 故A
100
=(PP
0
)[*](PP
0
)
-1
而PP
0
=[*],(PP
0
)
-1
=[*] 故A
100
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Esy4777K
0
考研数学二
相关试题推荐
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性表出;(2)
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,-1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=______.
设A=,B=P-1AP其中P为3阶可逆矩阵,则B2004-2A2=_______.
设n阶矩阵则|A|=___________.
设矩阵A=,矩阵B满足ABA*=2BA*+E.其中A*为A的伴随矩阵,E是单位矩阵,则|B|=___________.
已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1-α2),B=(α1,α2).若|A|=6,|B|=_______.
随机试题
建设中国特色社会主义文化的根本任务是()
合同管理的主要内容有()。
水运工程项目实施,应当在()划分单位工程、分部和分项工程。
你对我国司法行政体制改革有什么想法?
王某花20万元在某汽车4S店购买了一辆小汽车。3个月后,王某到4S店保养汽车时,员工告诉他:“你的车发生过事故,车门已整过。”王某心想,自己开车至今未发生过事故,因而怀疑自己所购车辆并非新车。后经证实,该4S店卖给王某的是一辆退货车。根据我
对于结果加重犯,应当按照()。
这个国家在2007年控制非法药物进入的计划失败了。尽管对非法药物的需求呈下降趋势,但是,如果这个计划没有失败,多数非法药物在2007年的批发价格不会急剧下降。以下哪项是上述论证的一个假设?
Whohasn’twantedtomasternotjusttwolanguagesbut10?TakeGiuseppeMezzofanti,a19th-centurypriestwhowassaidtobe【C1
Theboyisintelligent.
Ithinkit’snouse(read)______withoutunderstanding.
最新回复
(
0
)