首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
admin
2021-03-16
60
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三维线性无关的列向量,又
Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
,
(Ⅰ)证明:矩阵A可相似对角化;
(Ⅱ)设P=(α
1
,α
2
,α
3
)=
,求A
100
.
选项
答案
(Ⅰ)令P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P可逆, 由Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
得 (Aα
1
,Aα
2
,Aα
3
)=(α
1
+4α
2
,α
1
+α
2
,3α
3
),即 AP=P[*],或P
-1
AP=[*] 从而A~B, 由|λE-B|=[*]=(λ+1)(λ-3)
2
=0得λ
1
=-1,λ
1
=-1,λ
2
=λ
3
=3, 由3E-B=[*]得 r(3E-B)=1,从而B可相似对角化, 再由A~B得A也可相似对角化. (Ⅱ)由P
-1
AP=[*]=B得A
100
=PB
100
P
-1
, 由-E-B→E+B=[*]得B的属于特征值λ
1
=-1的线性无关的特征向量为β
1
=[*]; 由3E-B→[*]得B的属于特征值λ
2
=λ
3
=3的线性无关的特征向量为β
2
=[*], 令P
0
=[*],则P
0
-1
BP
0
=[*], 从而B
100
=[*], 故A
100
=(PP
0
)[*](PP
0
)
-1
而PP
0
=[*],(PP
0
)
-1
=[*] 故A
100
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Esy4777K
0
考研数学二
相关试题推荐
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求矩阵A.
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为__________。
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
设n阶矩阵则|A|=___________.
设三阶矩阵A=,三维列向量α=(a,1,1)T.已知Aα与α线性相关,则a=_______.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设矩阵A=,矩阵B满足ABA*=2BA*+E.其中A*为A的伴随矩阵,E是单位矩阵,则|B|=___________.
随机试题
行政法律责任中的行政处罚的形式有()
用人单位自用工之日起满多长时间不与劳动者订立书面劳动合同的,视为用人单位与劳动者已订立无固定期限劳动合同()
临床上多器官功能衰竭出现的顺序可能有先有后,下列有关描述中哪些是正确的
患者全身水肿而发亮,伴胸腹痞闷,烦热口渴,尿短赤,便干结,苔黄腻,脉沉数,宜选用何方
下列关于可转换公司债券叙述正确的是()
物质无非是各种物的总和,是从这种总和中抽象出来的。这种观点属于()。
下列各句中,没有歧义的一句是:
设离散型随机变量X的分布函数为Fx(x)=则Y=X2+1的分布函数为________.
本世纪将是一个以知识经济为主导的世纪,信息化、终身教育将成为社会发展的主旋律。
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
最新回复
(
0
)