首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
设A为3阶矩阵,α1,α2,α3为三维线性无关的列向量,又 Aα1=α1+4α2,Aα2=α1+α2,Aα3=3α3, (Ⅰ)证明:矩阵A可相似对角化; (Ⅱ)设P=(α1,α2,α3)=,求A100.
admin
2021-03-16
74
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三维线性无关的列向量,又
Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
,
(Ⅰ)证明:矩阵A可相似对角化;
(Ⅱ)设P=(α
1
,α
2
,α
3
)=
,求A
100
.
选项
答案
(Ⅰ)令P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P可逆, 由Aα
1
=α
1
+4α
2
,Aα
2
=α
1
+α
2
,Aα
3
=3α
3
得 (Aα
1
,Aα
2
,Aα
3
)=(α
1
+4α
2
,α
1
+α
2
,3α
3
),即 AP=P[*],或P
-1
AP=[*] 从而A~B, 由|λE-B|=[*]=(λ+1)(λ-3)
2
=0得λ
1
=-1,λ
1
=-1,λ
2
=λ
3
=3, 由3E-B=[*]得 r(3E-B)=1,从而B可相似对角化, 再由A~B得A也可相似对角化. (Ⅱ)由P
-1
AP=[*]=B得A
100
=PB
100
P
-1
, 由-E-B→E+B=[*]得B的属于特征值λ
1
=-1的线性无关的特征向量为β
1
=[*]; 由3E-B→[*]得B的属于特征值λ
2
=λ
3
=3的线性无关的特征向量为β
2
=[*], 令P
0
=[*],则P
0
-1
BP
0
=[*], 从而B
100
=[*], 故A
100
=(PP
0
)[*](PP
0
)
-1
而PP
0
=[*],(PP
0
)
-1
=[*] 故A
100
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Esy4777K
0
考研数学二
相关试题推荐
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求矩阵A.
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性表出;(2)
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设A=,B=P-1AP其中P为3阶可逆矩阵,则B2004-2A2=_______.
设3阶矩阵A的特征值为2,3,λ.如果|2A|=-48,则λ=______.
设矩阵A=,矩阵B满足ABA*=2BA*+E.其中A*为A的伴随矩阵,E是单位矩阵,则|B|=___________.
已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1-α2),B=(α1,α2).若|A|=6,|B|=_______.
随机试题
下列各种类型急性白血病中,哪一种最常发生中枢神经系统白血病
抗休克的最基本治疗措施是
房地产的需求价格弹性,是建立在房地产的需求量与消费者收入量之间关系上的一个弹性概念。用来表示消费者对某种房地产需求量的相对变动对于消费者收入量的相对变动的反应程度。它是房地产需求量变化的百分比与消费者收入量变化的百分比之比。()
混凝土碱骨料反应产生的原因是()。
建设工程项目全面质量管理的主要特点有()。
分组表划分为()。
2012年3月1日,李某去某商场购物时,将自己携带的两件物品存放在存包处,当天取物时却只取到一件。存包员否认李某存了两件物品。双方争议未果,李某拟起诉至人民法院。根据民法基本理论的规定,李某向人民法院提起民事诉讼的有效期间是()。
根据我国法律规定,私人收藏的文物一律禁止出境。()
老年期心理卫生措施包括()。
Therearemanybeautifulflowersintheg______
最新回复
(
0
)