首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是: f(a,b)=0,f’x(a,b)=0, 且当r(a,b)>0
admin
2018-04-18
75
问题
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’
y
(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:
f(a,b)=0,f’
x
(a,b)=0,
且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值.其中
选项
答案
y=φ(x)在x=a处取得极值的必要条件是φ’(a)=0.按隐函数求导法,φ’(x)满足 f’
x
(x,φ(x))+f’
y
(x,φ(x))φ’(x)=0. (*) 因b=φ(a),则有 f(a,b)=0, φ’(a)=[*]=0, 于是f’
x
(a,b)=0. 将(*)式两边对x求导得 f"
xx
(x,φ(x))+f"
xy
(x,φ(x))φ’(x)+[*][f’
y
(x,φ(x))]φ’(x)+f’
y
(x,φ(x))φ"(x)=0, 上式中令x=a,φ(a)=b,φ’(a)=0,得 [*] 因此当[*]>0时,φ"(a)<0,故b=φ(a)是极大值; 当[*]<0时,φ"(a)>0,故b=φ(a)是极小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/Etk4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
求极限
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2012年试题,二)设。其中函数f(u)可微,则
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
随机试题
感受寒邪而致的“中寒”是指
关于生效裁判执行,下列哪一做法是正确的?
某房地产开发公司拟在某城市近郊区开发建造一居住区,具体的设计规划见相关文件。居住区用地的中高层住宅比例为40%、总建筑密度为50%、住宅建筑净密度为80%;该用地现已成为市政公用设施齐全,布局完整,环境较好,以多、中、高层住宅为主的用地。该类用地按照土
二级资质房地产估价机构可以从事的房地产估价业务有()。[2008年考题]
我国统一规定《测绘资质证书》的式样的部门是()。
某公司承接一座城市跨河桥A标,为上、下行分立的两幅桥,上部结构为现浇预应力混凝土连续箱梁结构,跨径为70m+120m+70m。建设中的轻轨交通工程B标高架桥在A标两幅桥梁中间修建,结构形式为现浇截面预应力混凝土连续箱梁,跨径为87.5m+145m+87.5
易燃气体的火灾危险性不包括()。
账户的期末余额=期初余额+本期增加发生额一本期减少发生额。()[2009年真题]
不在公司担任具体管理职务的董事,因履行职责到达公司现场的时间每年应当不少于()
下列各项资产减值准备中,在相关资产持有期间内可以通过损益转回的有()
最新回复
(
0
)