首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则( ).
admin
2019-07-12
47
问题
设向量组α
1
,α
2
,…,α
m
线性无关,β
1
可由α
1
,α
2
,…,α
m
线性表示,但β
2
不可由α
1
,α
2
,…,α
m
线性表示,则( ).
选项
A、α
1
,α
2
,…,α
m-1
,β
1
线性相关
B、α
1
,α
2
,…,α
m-1
,β
1
,β
2
线性相关
C、α
1
,α
2
,…,α
m
,β
1
+β
2
线性相关
D、α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关
答案
D
解析
(A)不对,因为β
1
可由向量组α
1
,α
2
,…,α
m
线性表示,但不一定能被α
1
,α
2
,…,α
m-1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关;
(B)不对,因为α
1
,α
2
,…,α
m-1
,β
1
不一定线性相关,β
2
不一定可由α
1
,α
2
,…,α
m-1
,β
1
线性表示,所以α
1
,α
2
,…,α
m-1
,β
1
,β
2
不一定线性相关;
(C)不对,因为β
2
不可由α
1
,α
2
,…,α
m
线性表示,而β
1
可由α
1
,α
2
,…,α
m
线性表示,所以β
1
+β
2
不可由α
1
,α
2
,…,α
m
线性表示,于是α
1
,α
2
,…,α
m
,β
1
+β
2
线性无关,选(D).
转载请注明原文地址:https://kaotiyun.com/show/ExJ4777K
0
考研数学三
相关试题推荐
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.-
设且F可微,证明:
设xy=xf(z)+yg(z),且xf′(z)+yg′(z)≠0,其中z=z(x,y)是x,y的函数.证明:
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f′x(0,1,一1)=__________.
(2012年)设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=()
(1999年)设f(x,y)连续,且f(x,y)=xy+其中D是由y=0,y=x2,x=1所围成的区域,则f(x,y)等于()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
A为三阶实对称矩阵,A的秩为2,且。(Ⅰ)求A的所有特征值与特征向量;(Ⅱ)求矩阵A。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设X~t(n),则下列结论正确的是().
随机试题
下列各项中哪一项属于意识活动( )
瘿病气郁痰阻证的主方是
属于预防策略中主动干预的是
通过成立客户俱乐部或客户会的方式吸收会员并挖掘潜在客户的方法是()。
经出租人书面同意转租房屋的,原房屋租赁合同()。
单项比赛顺风跑风速超过每秒_______米,全能项目超过每秒_______米,所破纪录不予承认。
中国特色社会主义事业是改革创新的事业。党要站在时代前列代领导人民不断开创事业发展新局面,必须以改革创新精神加强自身建设,始终成为中国特色社会主义事业的坚强领导核心。新形势下加强党的建设。必须按照党章要求
在E——R图中,建立了表示学生选修课程活动的实体联系模型,其中的两个实体分别是()。
ThecomputerIboughtlastweekisnotexpensiveatall.Infact,Iwouldgladlyhavepaid______forit.
Withtherecentrapidadvancesininformationtechnologies,【B1】______researchersateverylevelandinevery【B2】______havedev
最新回复
(
0
)