设有微分方程yˊ+p(x)y=x2,其中求在(-∞,+∞)内的连续函数y=f(x),使其满足所给的微分方程,且满足条件y(0)=2.

admin2016-04-29  63

问题 设有微分方程yˊ+p(x)y=x2,其中求在(-∞,+∞)内的连续函数y=f(x),使其满足所给的微分方程,且满足条件y(0)=2.

选项

答案当x≤1时,微分方程为yˊ+y=x2,这是一阶线性微分方程,该方程的通解为 [*] 当x>1时,微分方程为[*],这是一阶线性微分方程,该方程的通解为 [*] 由于方程的解在点x=1处连续,所以 [*] 从而[*],所以原方程通解为 [*] 由于y(0)=2,所以c=0,所以满足条件的函数为 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/F2T4777K
0

最新回复(0)