首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(10)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
admin
2018-08-01
52
问题
(10)设A=
,正交矩阵Q使得Q
T
AQ为对角矩阵.若Q的第1列为
(1,2,1)
T
,求a,Q.
选项
答案
由题设,ξ=(1,2,1)
T
为A的一个特征向量,于是有Aξ=λ
1
ξ,即 [*] 得λ
1
=2,a=-1.所以A=[*] 由A的特征方程 [*] 得A的特征值为2,5,-4. 对于特征值5,求齐次线性方程组(5I-A)x=0的基础解系,由 [*] 得通解x
1
=x
2
,x
2
=-x
3
(x
3
任意).令x
3
=1,得基础解系为(1,-1,1)
T
,将其单位化,得属于特征值5的一个单位特征向量为[*]=(1,-1,1)
T
. 同理可求得属于特征值-4的一个单位特征向量为[*]=(-1,0,1)
T
. [*] 故Q为所求的正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/F2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
证明:对任意的x,y∈R且x≠y,有
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
求微分方程的通解.
当0<x<时,证明:<sinx<x.
求方程组的通解.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
男性,65岁,剧烈咳嗽后突然出现左胸刀割样疼痛,觉气促、不能平卧。查体:左侧胸廓稍饱满,左侧触觉语颤减弱,左肺叩诊鼓音,呼吸音较右肺明显减弱。该患者最合适的处理是
先天性巨痣在哪个年龄段出现
光化学烟雾氮氧化物
A、发热伴胸腹部玫瑰疹B、发热伴盗汗、消瘦、乏力C、发热伴右上肢痛、黄疸D、发热伴腰痛、尿频E、发热伴头痛、喷射性呕吐、颈项强直急性胆囊炎出现
所谓( ),是指选定一种投资风格后,不论市场发生何种变化均不改变这一选定的投资风格。
根据教师发展的五阶段理论,教师发展的基本目标是达到()。
2016年9月27日,中共中央政治局召开会议,研究全面从严治党重大问题。会议强调,必须:
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性。
Whenyouarelookingforwork,youmayoccasionallyfeelrejected.Butbearinmindthatsomebodyoutthereisjustasanxioust
【B1】【B5】
最新回复
(
0
)