首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2018-01-30
71
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
T
f
2
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)f
’
(t)-f(t)一tf
’
(t)=f(t), 化简[2f(t)一t]f
’
(t)=2f(t), 亦即[*]=1, 解这个微分方程得t=[*]。 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入[*]。 因此该曲线方程为 2y+[*]一3x=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FFk4777K
0
考研数学二
相关试题推荐
[*]
函数y=x3+12x+1在定义域内[].
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
设,问a,b为何值时,函数F(x)=f(x)+g(x)在﹙﹣∞,﹢∞﹚上连续。
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x)在点x=1的某邻域内有定义,且满足3x≤f(x)≤x2+x+1,则曲线y=f(x)在点x=1处的切线方程为________.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
随机试题
焊接结构质量验收依据的检验文件中没有()。
寒邪直中三阴,真阳衰微,症见恶寒蜷卧,四肢厥冷,吐泻腹痛,口不渴,神疲欲寐,脉沉微者,治宜选用
下列说法正确的是
坡道的常用坡度一般为()。
在保持流动性及水泥用量不变的条件下使用减水剂,可使混凝土()。
Whenweanalyzethesaltsalinity(盐浓度)ofoceanwaters,wefindthatitvariesonlyslightlyfromplacetoplace.Nevertheless,s
下列情形中,构成徇私枉法罪的是()。
为了删除列表框中的一个列表项,应使用的列表框方法是
WhichoneofthefollowingisINCORRECT?
春运(Chunyun)是指中国春节前后一段时期里出现的一种高负荷交通运输,一般从春节前15天开始,持续约40天。对大多数中国人来说,在春节期间与家人团聚是一个悠久的传统。人们从工作、读书的地方回到家里,在除夕夜与家人一起吃团圆饭春运期间的客流量(pass
最新回复
(
0
)