首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2018-01-30
66
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
T
f
2
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)f
’
(t)-f(t)一tf
’
(t)=f(t), 化简[2f(t)一t]f
’
(t)=2f(t), 亦即[*]=1, 解这个微分方程得t=[*]。 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入[*]。 因此该曲线方程为 2y+[*]一3x=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FFk4777K
0
考研数学二
相关试题推荐
[*]
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
求下列不定积分:
设问当k为何值时,函数f(x)在其定义域内连续?为什么?
已知f(x)是微分方程=_______.
证明:
求极限.
设有三元方程xy-zlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
随机试题
We_.Pleasefastenyourseatbelt.()
新生儿通过胎盘从母体中获得的免疫球蛋白是
男性,23岁。3年来多次于夜晚饱餐后次日清晨醒来发现四肢不能活动,大小便正常,吞咽和呼吸正常,数日后恢复,已发作5次。今晨醒来又出现四肢不能运动。体检:颅神经正常,四肢肌力均为1级,腱反射低,无病理反射,感觉正常,该患者首选治疗措施是
编制数量指标指数一般是采用()做同度量因素。
机器设备的经济性贬值通常与()有关。
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.求AE的长.
Loveroftowns______Iam.IrealizethatIoweadebttomyearlycountrylife.
下列关于WindowsServer2003系统下DNS服务器的描述中,错误的是()。
下列链表中,其逻辑结构属于非线性结构的是
下面程序有注释的语句中,错误的语句是( )。 #include <iostream> using namespace std; class A{ int a; public: void show A(
最新回复
(
0
)