首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2018-01-30
96
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
T
f
2
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)f
’
(t)-f(t)一tf
’
(t)=f(t), 化简[2f(t)一t]f
’
(t)=2f(t), 亦即[*]=1, 解这个微分方程得t=[*]。 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入[*]。 因此该曲线方程为 2y+[*]一3x=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FFk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
下列条件中,当△x→0时,使f(x)在点x=x。处不可导的条件是[].
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设A=(Aij)n×n是正交矩阵,将A以行分块为A=(α1,α2,…αn)T,则方程组AX=b,b=(b1,…,bn)T的通解为________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ(a,b),使得f"(f)=g"(ξ).
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
A、主动脉瓣关闭不全B、高血压、甲状腺功能亢进症C、两者均有D、两者均无颈静脉搏动出现于()
男性,30岁,由高处跌落,引起骨盆骨折及股骨开放性骨折,伤口大量出血,现场急救治疗首先应进行
麻子仁丸使用于( )。
K银行对在建工程项目享有()。
曳引式电梯设备进场验收合格后,在驱动主机安装的工序是()。
一张面额6000元的商业汇票4个月后到期,年现率为1096,贴现利息应为()。
根据企业所得税法律制度的规定,企业发生的下列支出中,在计算应纳税所得额时准予扣除的是()。
教师讲解“所以动心忍性,曾益其所不能”中“所以”的词义,另举一例加以说明,下列合适的是()。
促使第三世界在国际舞台的崛起,并成为决定国际事务的重要力量的标志是()。
刘猛是某出版社的一名编辑,他的好朋友李杰发给他一篇科普文章(文章存放在“Word素材文件.docx”中),请他帮忙进行排版。假如你是刘猛,请按照如下要求帮助李杰完成相关排版工作:在标题“人名索引”下方插入格式为“流行”的索引,栏数为2,排序依据为拼音,
最新回复
(
0
)