首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2018-01-30
65
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
T
f
2
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)f
’
(t)-f(t)一tf
’
(t)=f(t), 化简[2f(t)一t]f
’
(t)=2f(t), 亦即[*]=1, 解这个微分方程得t=[*]。 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入[*]。 因此该曲线方程为 2y+[*]一3x=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FFk4777K
0
考研数学二
相关试题推荐
利用定积分计算极限
由Y=lgx的图形作下列函数的图形:
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
设f(x)在[0,1]上连续,取正值且单调减少,证明
求下列函数图形的凹凸区间及拐点.(1)y=xe-x;(2)y=ln(x2+1).
求下列不定积分:
设D是位于曲线下方、x轴上方的无界区域.求区域D绕x轴旋转一周所成旋转体的体积V(a);
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
求f(x,y,z)=lnx+2lny+3lnz存球面x2+y2+z2=6r2(r>0)上的最大值,并由此证明:对任意正数a,b,c成立
随机试题
消防控制室的顶棚和墙面应采用()装修材料。
破坏性可靠性试验,除特殊规定外,在试验场地和基地之间行驶的辅助里程__________试验里程。
骨盆骨折的病人为明确是否有尿道断裂,最简便快捷的检查方法是
流行病学三角包含的因素是
下列各项中,属于母病及子的是
颞颌关节紊乱综合征的治疗原则中,哪项是错误的
复合树脂充填时,洞缘斜面做在
不能异生为糖的是
工程设计管理模式的选择取决于()。
电子商务分类为()。
最新回复
(
0
)