首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵α1,α2,α3是3维线性无关的列向量,且 Aα1=α1-α2+3α3, Aα2=4α1-3α2+5α3, Aα3=0. 求矩阵A的特征值和特征向量.
设A是3阶矩阵α1,α2,α3是3维线性无关的列向量,且 Aα1=α1-α2+3α3, Aα2=4α1-3α2+5α3, Aα3=0. 求矩阵A的特征值和特征向量.
admin
2016-10-20
61
问题
设A是3阶矩阵α
1
,α
2
,α
3
是3维线性无关的列向量,且
Aα
1
=α
1
-α
2
+3α
3
, Aα
2
=4α
1
-3α
2
+5α
3
, Aα
3
=0.
求矩阵A的特征值和特征向量.
选项
答案
由Aα
3
=0=0α
3
,知λ=0是A的特征值,α
3
是λ=0的特征向量. 由已知条件,有 A(α
1
,α
2
,α
32
)=(α
1
-α
2
+3α
3
,4α
1
-3α
2
+5α
3
,0) =(α
1
,α
2
,α
3
)[*] 记P=(α
1
,α
2
,α
3
),由α
1
,α
2
,α
3
线性无关,知矩阵P可逆,进而 P
-1
AP=B, 其中B=[*] 因为相似矩阵有相同的特征值,而矩阵B的特征多项式 |λE-B|=[*]=λ(λ+1)
2
, 所以矩阵A的特征值是:-1,-1,0. 对于矩阵B, [*] 所以矩阵B关于特征值λ=-1的特征向量是β=(-2,1,1)
T
. 若Bβ=λβ,即(P
-1
AP)β=λβ,亦即λ(Pβ)=λ(Pβ),那么矩阵A关于特征值λ-1的特征向量是 Pβ=(α
1
,α
2
,α
3
)[*]=-2α
1
+α
2
+α
3
. 因此k
1
(-2α
1
+α
2
+α
3
),k
2
α
3
分别是矩阵A关于特征值λ=-1和λ=0的特征向量,(k
1
k
2
≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/FMT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
下列各种类型的骨折中属于不稳定骨折的是
慢性心功能不全最常见的原因是
xy’’=(1+2x2)y’的通解是()。
某施工单位承接了一段二级道路施工,其中包括3道结构形式和工程量基本相同的涵洞。根据工期要求,对于3道涵洞施工要求组织几个相同的工作队,在同一时间、不同的空间上进行施工。按照资源计划的要求,施工涵洞时安排的技术工人主要有测量工、机修工、钢筋工、木工、混凝
下列选项中,属于客观公正的基本要求的有()。
某冰箱生产企业在市场上推出了一种只卖1999元的经济型产品,而它的高档产品要卖3万多元,从而在吸引顾客来看经济型冰箱时,尽力设法影响他们购买更高档的冰箱。该企业产品大类决策属于()。
依据()可以将学习划分为意义学习与机械学习。
在抗击外国侵略的战争中,许多爱国官兵英勇献身。其中,在第二次鸦片战争中以身殉国的是()。
汉代由皇帝下诏责成中央和地方各级长官每年向朝廷推荐贤能之人为官的选任制度是()。
A、Allwhalingisbad.B、Commercialwhalingisimmoral.C、Whalingshouldbelimitedonlyforfood.D、TheIWCshouldbereplaced.
最新回复
(
0
)