首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2. 求f(x,y)在椭圆域D={(x,y)∣x2+y2/4≤1}上的最大值和最小值.
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2. 求f(x,y)在椭圆域D={(x,y)∣x2+y2/4≤1}上的最大值和最小值.
admin
2019-04-05
58
问题
[2005年] 已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.
求f(x,y)在椭圆域D={(x,y)∣x
2
+y
2
/4≤1}上的最大值和最小值.
选项
答案
利用全微分和初始条件先求出f(x,y)的表达式,而f(x,y)在椭圆域上的最大值、最小值可能在区域内或其边界上达到,而后者又可转化为求条件极值. (1)求f(x,y)的表达式.由dz=2x dx一2y dy可知z=f(x,y)=x
2
一y
2
+C. 再由f(1,1)=2,得C=2,故z=f(x,y)=x
2
一y
2
+2. (2)求f(x,y)在D内的驻点及相应函数值.令[*]=2x=0.[*]=-2y=0,求得D内的唯一驻点(0,0),且f(0,0)=2. (3)求f(x,y)在D的边界y
2
=4(1一x
2
)上的最大值、最小值.将y
2
=4(1一x
2
)代入 z=x
2
一y
2
+2,得到 z=x
2
一(4—4x
2
)+2, 即 z=5x
2
一2 (一1≤x≤1). 显然,z(x)在[一1,1]上的最大值为z∣
x=±1
=3,最小值为z∣
x=0
=一2. 综上所述,f(x,y)的最大值为max{2,3,一2}=3,最小值为min{2,3,一2)=一2. 解二 同解法一,求得驻点(0,0).用拉格朗日乘数法求此函数在椭圆x
2
+y
2
/4=1上的极值. 设 L=x
2
一y
2
+2+λ(x
2
+y
2
/4—1), 则[*] 由式①、式②、式③解得[*] 即有4个可能的极值点(1,0),(一1,0),(0,2),(0,一2). 又f(1,0)=f(一1,0)=3,f(0,2)=f(0,一2)=一2,再与f(0,0)=2比较,得f(x,y)在D上的最大值为3,最小值为一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/FPV4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,1]上连续,证明:∫01ef(x)dx∫01e-f(y)≥1.
求
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
积分=()
求极限
(2002年)已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若B=,求矩阵A.
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2005年]设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是().
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
中外合资有限责任公司所需的原材料、燃料等物资()
下列关于还原型谷胱甘肽的叙述,错误的是
下述关于固有口腔境界的描述,错误的是
下列选项中,与混合瘤的临床表现描述不符的是
项目对区域或宏观经济发展的影响包括()
输油泵的作用是供给高压泵足够的机油并保持一定的压力。()
根据上下文,在文中横线处填入最恰当的词是:对作者的感受,表述得最恰当的一句是:
有以下程序:#inelude#defineN4voidfun(inta[][N],intb[]){inti;for(i=0;i<N;i++)b[i]=a[i][i]-a[i][N-1-i];}main(){intx[N][
OralPresentationTherearetwomainstagesinvolvedinpresentinga【T1】【T1】______I.The【T2】stage【T2】______—involvingrese
每当新学期开始,高校学生社团(association)就开始招募新成员。据调查,大多数的在校大学生都参加过社团,其中有些学生甚至同时参加几个社团。社团活动极大地丰富了大学生们的校园生活。此外,学生还能培养社交能力和组织能力等各方面的能力。随着大学生的兴趣日
最新回复
(
0
)