首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn-r+1是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1 (其中k1+…+kn-r+1=1).
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn-r+1是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1 (其中k1+…+kn-r+1=1).
admin
2017-07-10
54
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…η
n-r+1
是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k
1
η
1
+…+k
n-r+1
η
n-r+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解.取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程解的结构,则它们均为对应齐次方程Ax=0的解.下面用反证法证:设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得l
1
ξ
1
+l
1
ξ
2
+…+l
n-r
ξ
n-r
=0,即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0,亦即一(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0.由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0,与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立.因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的一组基.由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设X一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
,=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
),则X=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
=0,令k
1
=1一k
2
一k
3
一…一k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而X=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jvt4777K
0
考研数学二
相关试题推荐
π
A、 B、 C、 D、 B
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设f(x)=2|x-a|(其中a为常数),求fˊ(x).
给定函数f(x)=ax2+bx+c,其中a,b,c为常数,求:fˊ(x),f(0),fˊ(1/2),fˊ(-b/2a).
当x→0时,kx2与是等阶无穷小,则k=___________.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知f’’(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
随机试题
患者,女,35岁。病人每于经间期出血,出血量多,色红质黏,无血块,神疲乏力,骨节酸楚,胸闷烦躁,纳食减少,小便短少,夜寐不熟,便干尿黄,舌红苔黄腻,脉细弦。治疗应首选( )。
甲乙两公司在交易过程中,乙公司向甲公司签发了票面金额为50万元的汇票一张,付款人为丙银行。后乙公司因经营不善,被法院宣告破产。随后甲公司向丙银行申请付款,则下列做法正确的是()。
2018年年初某企业拥有房产的原值共计3000万元,其中厂房原值共计2600万元,厂办幼儿园房产原值300万元,独立的地下工业用仓库原价100万元。该企业2018年发生如下业务:6月30日将原值为300万元的厂房出租,合同载明年租金24万元,每年年末取得
简述福勒等人提出的教师成长的三个阶段。
学生作为学习的主体因素,会从两个方面影响学与教的过程,一方面是群体差异,一方面是个体差异。下列因素中,属于个体差异因素的是()。
设当x→0时,(x-sinx)ln(1+x)是比高阶的无穷小,而是比高阶的无穷小,则n为().
打开指定文件夹下的演示文稿yswg01(如图),按下列要求完成对此文稿的修饰并保存。(1)在演示文稿开始处插入一张“标题幻灯片”,作为演示文稿的第一张幻灯片,输入主标题为“健康伴你一生”;第二张幻灯片版面设置改变为“垂直排列标题与文本”,并
母に________、ほんとうに悲しかった。
TheLondonUndergroundMapTheLondonUndergroundmapisextremelywelldesigned.Simple,easytounderstandand【76】(ATTRACT
Thenation’smurderratedeclinedlastyearforthefirsttimeinfouryears,droppingtothelowestlevelin40years.Experts
最新回复
(
0
)