首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn-r+1是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1 (其中k1+…+kn-r+1=1).
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn-r+1是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1 (其中k1+…+kn-r+1=1).
admin
2017-07-10
88
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…η
n-r+1
是它的n一r+1个线性无关的解.试证它的任一解可表示为x=k
1
η
1
+…+k
n-r+1
η
n-r+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解.取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程解的结构,则它们均为对应齐次方程Ax=0的解.下面用反证法证:设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得l
1
ξ
1
+l
1
ξ
2
+…+l
n-r
ξ
n-r
=0,即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0,亦即一(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0.由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0,与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立.因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的一组基.由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设X一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
,=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
),则X=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
=0,令k
1
=1一k
2
一k
3
一…一k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而X=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jvt4777K
0
考研数学二
相关试题推荐
-64
A、 B、 C、 D、 D
[*]
2
求下列不定积分:
A、 B、 C、 D、 DC也明显不对,因为“无穷小无穷大”是未定型,极限可能存在也可能不存在.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
试证明函数f(x)=在区间(0,+∞)内单调增加.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
_______用于在两组数据间查找最优组合。在该类型中有:三维曲面图,三维曲面图(框架图)。曲面图(俯视),曲面图(俯视框架图)。
A.主要扩张冠状动脉,增加氧供B.以降低氧耗量为主C.增加心肌收缩力D.降低外周阻力E.降低前负荷硝酸酯类的作用是
闭经肝肾不足证的用方为闭经痰湿阻滞证的用方为
由于铁路运输部门的原因,承包方施工机械未按期运入现场,导致工期延误,该种工期延误属于()延误。
我国证券投资基金的管理人只能由依法设立的()担任。
以下对销售与收款业务流程控制环节中与提取坏账准备、注销坏账的授权控制的控制活动及与相关认定的对应关系的陈述中,恰当的有()。
我国教育目的的理论基础是______。
引导加载程序在引导加载操作系统时,设置相关的寄存器和资源,跳转到【73】所在的空间,执行其引导,这个过程中可以给【74】传递参数,可以控制系统启动的模式。
言葉というものは、生活と深いかかわりを持っている。動物のラクダは、日本語では「ラクダ」という単語しかない。ところが、アラビア語には、同じラクダを指すのにも、「人が乗るためのラクダ」「荷物を運ぶためのラクダ」など、それぞれ違う単語があるという。①砂
Thestormsweepingoverthisareanowissuretocause______ofvegetablesinthecomingdays.
最新回复
(
0
)