首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
admin
2017-01-14
65
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0。证明:向量组α,Aα,…,A
k-1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…,λ
k-1
,使得 λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α=0, 则有 A
k-1
(λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α)=0, 从而得到λ
0
A
k-1
α=0。由题设A
k-1
α≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
=…=λ
k-1
=0,因此向量组α,Aα,…,A
k-1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/FPu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
4
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
求幂级数x2n的收敛域及函数.
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
已知f〞(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
随机试题
关于连续性和可用性管理的描述,不正确的是:________。
新一轮服务贸易谈判的方式是
第一度房室传导阻滞心电图PR间期应( )
口服铁剂治疗有效的缺铁性贫血患者,下列检查最先上升的是
A公司以30万元的价格向B公司订购一台机床,根据合同约定,A公司以银行承兑汇票支付价款。2010年3月1日,A公司签发一张以B公司为收款人、金额为30万元的银行承兑汇票(承兑银行已经签章),到期日为2010年9月1日。A公司将该汇票交给采购经理甲,拟由其携
NewVacationPolicyAllvacationdaysmustbetakenwithinthecalendaryearwithwrittenrequestssubmittedandapprovedby
2008年随着国际金融危机的出现和蔓延,中国饮料行业也几乎进入了寒冬。然而,大型食品饮料企业A公司却能够在饮料行业独树一帜,销售量不断提升。2008年,A公司与央视、部分省级电视台建立了长期广告发布合作机制,以确保自己的广告能在第一时间赢
家庭社会工作者应具备哪些能力?( )
《中华人民共和国未成年人保护法》中的未成年人指的是未满()周岁的公民。
Inhisclassicnovel,ThePioneers,JamesFenimoreCooperhashishero,alanddeveloper,takehiscousinonatourofthecity
最新回复
(
0
)