首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
admin
2013-09-03
62
问题
设n元线性方程组Ax=b,其中
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)a为何值时,方程组有唯一解?求x
1
;
(Ⅲ)a为何值时,方程组有无穷多解?求通解.
选项
答案
(Ⅰ)利用行列式性质,有 [*] (Ⅱ)若使方程组Ax=b有唯一解,则|A|=(n+1)a
n
≠0,即a≠0.则由克莱姆 法则得 [*] (Ⅲ)若使方程组Ax=b有无穷多解,则|A|=(n+1)a
n
=0,即a=0. 把a=0代入到矩阵A中,显然有r(A B)=r(A)=n-1,方程组的基础解系含一个 解向量,它的基础解系为k(1,0,0,…,0)
T
(k为任意常数). 代入a=0后方程组化为[*]特解取为(0,1,0,…,0)
T
,则方程组Ax=b的通解为k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
,其中的k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/jx54777K
0
考研数学一
相关试题推荐
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为___________________.
设函数,其中f(x)是连续函数,且f(0)=2,求φ’(x).
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数f(x)在[0,a]上可导,且f(0)=0,f’(x)单调增加,证明:
计算,其中Ω:x2+y2+z2≤1
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
设函数f(x)在区间(0,+∞)内有定义,且对于任意的x∈(0,+∞),y∈(0,+∞),有f(xy)=f(x)+f(y)+(x-1)(y-1),又设f’(1)存在且等于a,a≠1.求f(x)的表达式.
已知f(x)=是连续函数,求a,b的值。
设函数f为[0,1]上的连续函数,且0≤f(x)<1,利用二重积分证明不等式:
随机试题
所有爱斯基摩土著人都穿黑衣服;所有北婆罗洲土著人都穿白衣服;没有既穿白衣服又穿黑衣服的人;H穿白衣服。由此可见()
党的十七大提出,加快完善社会保障体制建设的重点是()。
Amoment’sdrillingbythedentistsmaymakeusnervousandupset.Manyofuscannotstandpain.Toavoidthepainofadrillin
对肺泡气分压变化起缓冲作用的肺容量是
肝脏严重受损时,血中蛋白质的主要改变是
酶活性极低,但不变性的温度是酶促反应随温度升高而加快的温度是
会计核算软件中的文字输入、屏幕提示和打印输出必须采用()。
以下各选项中,( )不属于著作财产权。
破釜沉舟:项羽
光纤接入网指的是使用______作为主要传输介质的因特网接入系统,在该传输介质中传输的是光信号。
最新回复
(
0
)