设f(x)为连续函数,f(0)=a,F(t)=[z+f(x2+y2+z2)]dV,其中Ωt是由曲面所围成的闭区域,求

admin2023-03-22  2

问题 设f(x)为连续函数,f(0)=a,F(t)=[z+f(x2+y2+z2)]dV,其中Ωt是由曲面所围成的闭区域,求

选项

答案F(t)=[*][z+f(x2+y2+z2)]dV=∫0dθ∫0π/4sinφdφ∫0t[rcosφ+f(r2)]r2dr =2π[∫0π/4sinφcosφdφ∫0tr3dr+∫0π/4sinφdφ∫0tf(r2)r2dr] =π[[*]∫0tr3dr+(2-[*])∫0tf(r2)r2dr]. 由洛必达法则有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/G0gD777K
0

最新回复(0)