首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为(β1,β2,…,βr)=(α1,α2,…,αs)K其中K为s×r矩阵,且向量组A线性无关.证明:向量组B线性无关的充分必要条件是矩阵R(K)=r.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为(β1,β2,…,βr)=(α1,α2,…,αs)K其中K为s×r矩阵,且向量组A线性无关.证明:向量组B线性无关的充分必要条件是矩阵R(K)=r.
admin
2020-06-05
80
问题
设向量组B:β
1
,β
2
,…,β
r
能由向量组A:α
1
,α
2
,…,α
s
线性表示为(β
1
,β
2
,…,β
r
)=(α
1
,α
2
,…,α
s
)K其中K为s×r矩阵,且向量组A线性无关.证明:向量组B线性无关的充分必要条件是矩阵R(K)=r.
选项
答案
令B=(β
1
,β
2
,…,β
r
),A=(α
1
,α
2
,…,α
s
),则有B=AK. 必要性 设向量组B线性无关.由向量组B线性无关及矩阵秩的性质,有 r=R(B)=R(AK)≤min{R(A),R(K)}≤R(K)≤min{r,s)≤r 因此R(K)=r. 充分性:方法一 因为矩阵R(K)=r,所以存在可逆矩阵c,使KC=[*]为K的标准形.于是 (β
1
,β
2
,…,β
r
)C=(α
1
,α
2
,…,α
s
)KC=(α
1
,α
2
,…,α
s
) 又因为C可逆,所以R(β
1
,β
2
,…,β
r
)=R(α
1
,α
2
,…,α
s
)=s≥R(K)=r,从而R(β
1
,β
2
,…,β
r
)=r,因此β
1
,β
2
,…,β
r
线性无关. 方法二 设矩阵R(K)=r.由于 Bx=0→AKx=0→A(Kx)=0→Kx=0→x=0 所以β
1
,β
2
,…,β
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GAv4777K
0
考研数学一
相关试题推荐
设f(x)=3x2+x22|x|,则使f(n)(0)存在的最高阶数n=
设随机变量X服从F(3,4)分布,对给定的α(0<α<1),数Fα(3,4)满足P{X>Fα(3,4)}=α,若P{X≤x}=1一α,则x=
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
下列命题成立的是().
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示,则
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
向量组α1,α2,α3,α4,α5与向量组α1,α3,α5的秩相等,则这两个向量组()
行列式=________。
行列式=__________.
随机试题
人类对森林的过度砍伐,对草原和湿地的破坏,工业和汽车排放大量的CO2,是我国喜马拉雅山的冰峰不断消融。从因果关系上看,这属于()。
You______thisbook.Youcanborrowitfromthelibrary.
Passingbyasupermarket,Iwasattractedbyalongqueueofpeoplewithbigplasticbagsfullofkindsofgoodstheyboughtout
下列关于胆汁的叙述,哪项是错误的
A、红霉素B、琥乙红霉素C、克拉霉素D、阿齐霉素E、罗红霉素在胃酸中稳定且无味的抗生素是()。
按照消费者对产品两种属性的重视程度进行划分,就会形成不同偏好的细分市场,这时会出现()模式。
用一种钢制的活动防护装置或活动支撑,通过软弱含水层,特别是河底、海底或者城市中心区修建隧道的方法是()。[2012年10月真题]
会计从业资格管理机构作出准予颁发会计从业资格证书的决定,应当自作出决定之日起()内向申请人颁发会计从业资格证书。
做学问,“要大处着眼,小处下手”。由博入专,不可急功近利,能大处着眼,为学方不致流于__________,而有裨益于世;能小处下手,方不致流于__________,所以做学问千万不要求速效。依次填入画横线部分最恰当的一项是()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
最新回复
(
0
)