首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b-a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b-a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3
admin
2018-04-14
89
问题
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(x)dx=f(η)(b-a);
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
选项
答案
(Ⅰ)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b]。 由定积分性质,有m(b-a)≤∫
a
b
f(x)dx≤M(b-a),即m≤∫
a
b
f(x)dx/(b-a)≤M。 根据连续函数介值定理,至少存在一点η∈[a,b],使得f(η)=∫
a
b
f(x)dx/(b-a),即 ∫
a
b
f(x)dx=f(η)(b-a)。 (Ⅱ)由(Ⅰ)的结论可知,至少存在一点θ∈[2,3],使∫
2
3
φ(x)dx=φ(η)(3-2)=φ(η)。则 φ(2)>∫
2
3
φ(x)dx=φ(η),且η>2。 对φ(x)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到φ(1)<φ(2),φ(η)<φ(2)得 φ’(ξ
1
)=[*]>0,其中1<ξ
1
<2; φ’(ξ
2
)=[*]<0,其中2<ξ
2
<η≤3; 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,有 φ"(ξ)=[*]<0,其中ξ∈(ξ
1
,ξ
2
)[*](1,3)。
解析
转载请注明原文地址:https://kaotiyun.com/show/GRk4777K
0
考研数学二
相关试题推荐
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
A、高阶无穷小.B、低阶无穷小.C、同阶但非等价无穷小.D、等价无穷小.C
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在z=1处取得极值g(1)=1.求
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
化二重积分为二次积分(写出两种积分次序).(1)D={(x,y)||x|≤1,|y|≤1}.(2)D是由y轴,y=1及y=x围成的区域.(3)D是由x轴,y=lnx及x=e围成的区域.(4)D是由x轴,圆x2+y2-2x=0在第一象限的部分及直线x
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
函数的可去间断点的个数为
设函数f(x)=x2(x-1)(x-2),则f’(x)的零点个数为
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
随机试题
女性,54岁,优秀话务员,近几年怀疑丈夫有外遇,看电视时激动,控制不住,外出走失1周找不到自己家,住在露天,公安人员收留送回家,吃饭用手抓着吃,记忆力下降,行为幼稚。既往高血压7年,脑梗死后10个月,神经系检查:BP225/110mmHg,说话口齿不清,右
监测站对某河段监测结果表明,水中铬超过卫生标准若干倍,在该河段上游有若干工厂,最有可能的污染源是
A.解表药B.活血化瘀药C.利水渗湿药D.清热药E.补虚药具有增强免疫功能、延缓衰老作用的中药是()。
患者,男,53岁。诊断为“大量心包积液”治疗给予安置心包引流管,对该患者的护理措施,错误的是
体征是指患者主观感受到的明显不适或痛苦。()
脚手架检查验收应按照相应规范要求进行,凡不符合规定的应立即进行整改,对检查结果及整改情况,应按实测数据进行记录,并由( )签字。
每逢“3.15”消费者节日,都能解决许多平时解决不了的问题,对此,你怎么看?
莎士比亚的“四大悲剧”是指《哈姆雷特》、《奥赛罗》、《李尔王》和______。
Rumorhasitthatmorethan20booksoncreationism/evolutionareinthepublisher’spipelines.Afewhavealreadyappeared.【F1】
ConservationistsonTuesdayappealedtocountriestourgentlyaddressnewthreatstowhales,dolphinsandothercetaceans(鲸类动物)a
最新回复
(
0
)