首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
admin
2019-05-15
45
问题
非齐次线性方程组AX=b中未知数个数为n,方程个数为m,系数矩阵A的秩为r,则( )
选项
A、r=m时,方程组AX=b有解.
B、r=n时,方程组AX=b有唯一解.
C、m=n时,方程组AX=b有唯一解.
D、r<n时,方程组AX=b有无穷多解.
答案
A
解析
因A是m×n矩阵,若R(A)=m,增广矩阵(A,b)也只有m行,则
m=R(A)≤R(A,b)≤m,
有R(A)=R(A,b),故AX=b有解.应选A;
或由R(A)=m知A的行向量组线性无关,那么其延伸组必线性无关,故增广矩阵(A,b)的m个行向量也是线性无关的,亦即R(A)=R(A,b);
关于B、D不正确的原因是:由r≤n不能推出R(A)=R(A,b)(注意:A是m×n矩阵,m可能大于n),AX=b不一定有解.故B、D不成立.
至于C,当m=n时,AX=b可能无解,还可能有无穷多解(只有当r=m=n时,AX=b才有唯一解),故C不成立.
转载请注明原文地址:https://kaotiyun.com/show/Gbc4777K
0
考研数学一
相关试题推荐
(1994年)计算曲面积分其中S是由曲面x2+y2=R2及两平面z=R.z=一R(R>0)所围成立体表面的外侧.
(2018年)设三是曲面的前侧,计算曲面积分
(2016年)设函数y(x)满足方程y"+2y’4-ky=0,其中0<k<1.若y(0)=1,y’(0)=1,求的值.
(2016年)设函数y(x)满足方程y"+2y’4-ky=0,其中0<k<1.证明:反常积分收敛;
(1992年)设则其以2π为周期的傅里叶级数在点x=π处收敛于_______________.
(1988年)设f(x)是周期为2的周期函数,它在区间(一1,1]上的定义为则f(x)的傅里叶(Fourier)级数在x=1处收敛于__________________.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2一α3,α2+α3线性相关,则a=__________.
当x→0时,为x的三阶无穷小,则a=__________,b=__________.
设A=(aij)n×n是正交矩阵,将A以行分块为A=(α1T,α2T,…,αnT)T,则方程组AX=b(b=(b1,…,bn)T)的通解为________.
设常数a>0,积分讨论I1与I2谁大谁小,并给出推导过程.
随机试题
在油田开发中的(),由于水淹面积小,含油饱和度高,水的相对渗透率低,含水上升速度缓慢。
佝偻病性手足搐搦症惊厥或喉痉挛发作时哪项处理是最恰当的
一小儿有哮喘病,症见面色白,气短懒言,语声低微,倦怠乏力,自汗怕冷,舌质淡苔薄白,脉细无力。证属哮喘缓解期何证
肝硬化腹水呈血性时首先考虑并发
甲因涉嫌故意伤害罪被人民检察院依法提起诉讼,被害人乙提起了附带民事诉讼,但法院经审理认定甲的行为不构成犯罪。下列选项中哪项是正确的?()
下列关于商品房预售条件,说法错误的是()。
我国《票据法》规定的票据包括()。
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T.(Ⅰ)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
Picture-takingisatechniquebothforreflectingtheobjectiveworldandforexpressingthesingularself.Photographsdepicto
Catshidetheirpaws.WhatisthepossibleChinesemeaningofthesentence?
最新回复
(
0
)