首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(χ)dχ≥k∫01f(χ)dχ.
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(χ)dχ≥k∫01f(χ)dχ.
admin
2019-08-12
38
问题
设f(χ)在[a,b]上连续且单调减少.证明:当0<k<1时,∫
0
k
f(χ)dχ≥k∫
0
1
f(χ)dχ.
选项
答案
∫
0
k
f(χ)dχ-k∫
0
1
f(χ)dχ=∫
0
k
f(χ)dχ-k[∫
0
k
f(χ)dχ+∫
k
1
f(χ)dχ] =(1-k)∫
0
k
f(χ)dχ-k∫
k
1
f(χ)dχ=k(1-k)[f(ξ
1
)-f(ξ
2
)] 其中ξ
1
∈[0,k],ξ
2
∈[k,1].因为0<k<1且f(χ)单调减少, 所以∫
0
k
f(χ)dχ-k∫
0
1
f(χ)dχ=k(1-k)[f(ξ
1
)-f(ξ
2
)]≥0,故∫
0
k
f(χ)dχ≥k∫
0
1
f(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/GeN4777K
0
考研数学二
相关试题推荐
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设,B=U-1A*U.求B+2E的特征值和特征向量.
设=1,且f"(x)>0,证明:f(x)>x.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设实对称矩阵求可逆矩阵P,使P-1AP为对角矩阵,并计算行列式|A—E|的值.
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)