首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( )
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( )
admin
2019-05-17
46
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
C
解析
根据线性方程组解的结构性质,易知2α
1
一(α
2
+α
3
)=(2,3,4,5)
T
是Ax=0的一个非零解,所以应选C。
转载请注明原文地址:https://kaotiyun.com/show/GgV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A与对角矩阵相似,则().
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3.则常数a、b、c之积abc=______.
已知α=(1,3,2)T,β=(1,一1,一2)T,A=E一αβT,则A的最大的特征值为__________.
设A=有三个线性无关的特征向量,则a=________
求曲线y=-x2+1上一点P(x0,y0)(其中x0≠0),使过P点作抛物线的切线,此切线与抛物线及两坐标轴所围成图形的面积最小.
求极限
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
随机试题
有4个基金2014年和2015年的分红方案如下:根据这些分红方案,最有可能是封闭式基金的是()。
病人阑尾炎术后1周出现发热,体温38.5℃,伴有里急后重,排便次数6~8次/日,内有黏液。此时。病人处理原则是
A.风水泛滥B.湿毒浸淫C.水湿浸渍D.湿热壅盛E.脾阳虚衰患者水肿日久,腰以下肿甚,按之凹陷不起,畏寒肢冷,尿少。舌淡苔白滑,脉沉弱。其证候是
患儿,10个月。因发热、呕吐、惊厥来就诊。确诊为化脓性脑膜炎。本病最容易出现的并发症为
对样品完整性描述正确的是()。
甲地的刘某和乙地的李某签订了一份购买30台空气净化器的买卖合同,双方约定合同的签订地为丙地。刘某在甲地签字盖章,随后以快递方式将合同邮至乙地,李某在合同上完成签字盖章。合同约定价款为10万元,李某在合同签订后1个月内分三次将空气净化器运输到刘某指定地点丁地
甲公司2017年1月购入一宗土地用于建设厂房,厂房工程于2018年1月完工。甲公司会计账簿中记载的“无形资产一土地使用权”金额为5000万元,“固定资产一厂房”金额为1200万元。当地规定的房产原值减除比例为30%。甲公司没有其他房产,宗地容积率为0.75
甲公司拟投资某项目,一年前花费10万元做过市场调查,因故中止。现重启该项目,拟使用闲置的一间厂房,厂房购入时价格2000万元,当前市价2500万元;项目还需投资500万元购入新设备。在进行该项目投资决策时,初始投资是()万元。
深圳和香港SARS联合攻关小组在2003年5月23日宣布,SARS病毒溯源研究获得重要进展,科研人员成功地对从当地野生动物交易市场中随机抽取的六只果子狸的粪便样本中分离出的SARS样病毒基因进行了全序列测定,分析显示,这种SARS样病毒与人类SARS病毒有
Mymother’sweddingbandmaynothavebeenfancyorexpensive,buttome,itwasapricelessjewel.WhenIwasgrowingup,m
最新回复
(
0
)