设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0, 1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3

admin2017-01-21  30

问题 设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0, 1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3=(1,—1,—1,1,1)T。求
(Ⅰ)线性方程组(3)的通解;
(Ⅱ)矩阵C=(AT,BT)的秩。

选项

答案(Ⅰ)线性方程组(l)Ax=0的通解为x=k1α1+k2α2+k3α3;线性方程组(2)Bx=0的通解为x=l1β1+l2β2+l3β3;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4) k1α1+k2α2+k3α3=l1β1+l2β2+l3β3,将其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(—2,0,2,—1,0,1)T。将其代入(4)得到方程组(3)的一个基础解系ξ=—2α1+2α2=—β13=(0,—2,0,2,0)T。所以方程组(3)的通解为 x=k(0,—1,0,1,0)T,其中k为任意常数。 (Ⅱ)线性方程组(3)[*]与线性方程组xT(AT,BT)=0等价,而方程组(3)的基础解系只含一个向量,故矩阵C=(AT,BT)的秩r(C)=5—1=4。

解析
转载请注明原文地址:https://kaotiyun.com/show/GmH4777K
0

最新回复(0)