首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)上可导,且其反函数存在,记为g(x).若 ∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1,则当-∞<x<+∞时f(x)=_________.
设f(x)在(-∞,+∞)上可导,且其反函数存在,记为g(x).若 ∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1,则当-∞<x<+∞时f(x)=_________.
admin
2016-09-13
42
问题
设f(x)在(-∞,+∞)上可导,且其反函数存在,记为g(x).若
∫
0
f(x)
g(t)dt+∫
0
x
f(t)dt=xe
x
-e
x
+1,则当-∞<x<+∞时f(x)=_________.
选项
答案
[*]
解析
未知函数含于积分之中的方程称为积分方程.现在此积
分的上限为变量,求此方程的解的办法是将方程两边对x求导数化成微分方程解之.注意,积分方程的初值条件蕴含于所给式子之中,读者应自行设法挖掘之.
将所给方程两边对x求导,有
g[f(x)]fˊ(x)+f(x)=xe
x
.
因g[f(x)]≡x,所以上式成为
xfˊ(x)+f(x)=xe
x
.
以x=0代入上式,由于fˊ(0)存在,所以由上式得f(0)=0.当x≠0时,上式成为
fˊ(x)+
f(x)=e
x
.
解得
由于f(x)在x=0处可导,所以连续.令x→0,得
0=f(0)=1+
,
所以
=-1,从而知C=1.于是得
转载请注明原文地址:https://kaotiyun.com/show/H3T4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
利用极坐标将积分,化成一元函数积分式,其中f连续.
下列反常积分是否收敛?如果收敛求出它的值:
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
若函数y=f(x)有fˊ(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.
随机试题
下列程序的输出结果是inta=1;intf(){inta=2;returna;}voidmain(){printf("%d,%d",a,f());}()
分泌胃泌素的细胞是分泌胃蛋白酶原的细胞是
A.濡脉B.缓脉C.紧脉D.芤脉E.涩脉大失血,伤阴的脉象是
私募发行的优点为()。
中国第一个资产阶级政治团体是兴中会。()
同时打开游泳池的A、B两个进水管,加满水需l小时30分钟,且A管比B管多进水180立方米。若单独打开A管,加满水需2小时40分钟。则B管每分钟进水多少立方米?()
某国家领导人要在连续6天(分别编号为第一天,第二天……第六天)内观察6座工厂F、G、H、J、Q和R,每天只视察一座工厂,每座工厂只被视察一次。视察时间的安排必须符合下列条件:(1)视察F在第一天或第六天。(2)视察J的日子比视察Q的日子早。(3)视察
在考生文件夹下,打开文档word2.docx,按照要求完成下列操作并以该文件名(word2.docx)保存文档。【文档开始】产品名称产量(万台)合计(万台)一季度二季度三季度四季度
MigrantWorkersInthepasttwentyyears,therehasbeenanincreasingtendencyforworkerstomovefromonecountrytoanot
Weadvisedthemtotakearest,butthey______onfinishingthework.
最新回复
(
0
)