首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量,证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆阵.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量,证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆阵.
admin
2017-07-26
61
问题
A是三阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量,证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关 →(λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
)=[ξ
1
,ξ
2
,ξ
3
][*] =2λ
1
λ
2
λ
3
≠0, →|A|=λ
1
λ
2
λ
3
≠0,即A是可逆阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/H5H4777K
0
考研数学三
相关试题推荐
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设矩阵A与B相似,其中(I)求x与y的值;(Ⅱ)求可逆矩阵P,使得P-1AP=B.
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
设n阶矩阵A与B等价,则必有().
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设二维随机变量(X,Y)服从二维正态分布,则下列说法不正确的是().
向量组a1,a2,…,as线性无关的充分条件是().
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设f(t)(t≥0)为连续函数,则由下式确定的函数F称为f的拉普拉斯变换:其中F的定义域为所有使积分收敛的s的值的集合,试求出下列函数的拉普拉斯变换:(1)f(t)=1;(2)f(t)=el;(3)f(t)=t.
下列积分中积分值为0的是().
随机试题
下列不属于经济全球化主要内容的是()
心内兴奋传导最易发生阻滞的部位是
英汉对照术语A、循证医学B、药学服务C、药物信息D、治疗药物监测E、药物不良事件ADE(AdverseDrugEvent)
关于检察院办理死刑上诉、抗诉案件的开庭前审查程序,下列哪些说法是正确的?
一只“100Ω、100W”,的电阻与120V电源相串联,要使该电阻正常工作至少要串入的电阻R为()。
一般而言,项目质量计划主要包括的内容有()。
价值工程中,功能整理是用系统的观点将已定义了的功能加以系统化找出各局部功能相互之间的逻辑关系是并列关系还是上下位置关系,表达这种功能之间关系可用()。
风水在古代其实包含有很深的科学成分,“依山而建,傍水而居”、“面南背北,坐北朝南”几千年流传下来,若非其有着极强的______价值.到今天也不至于被建筑商和民间如此______。填入划横线部分最恰当的一项是:
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidy【C1】______fast-foo
为了建立如图所示的存储结构(即每个结点含两个域,data是数据域,next是指向结点的指针域),则在【】处应填入的选项是Structlink{chardata;【】}node;
最新回复
(
0
)