首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)= (Ⅰ)若f(χ)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(χ)有何间断点,并指出它的类型.
设f(χ)= (Ⅰ)若f(χ)处处连续,求a,b的值; (Ⅱ)若a,b不是(Ⅰ)中求出的值时f(χ)有何间断点,并指出它的类型.
admin
2019-05-11
137
问题
设f(χ)=
(Ⅰ)若f(χ)处处连续,求a,b的值;
(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(χ)有何间断点,并指出它的类型.
选项
答案
(Ⅰ)首先求出f(χ).注意到 [*] 故要分段求出f(χ)的表达式. 当|χ|>1时,f(χ)=[*]; 当|χ|<1时,f(χ)=[*]=aχ
2
+bχ. 于是得[*] 其次,由初等函数的连续性知f(χ)分别在(-∞,-1),(-1,1),(1,+∞)上连续. 最后,只需考察f(χ)在分界点χ=±1处的连续性.这就要按定义考察连续性,分别计算: [*] 从而f(χ)在χ=1连续[*]f(1+0)=f(1-0)=f(1)[*]a+b=1=[*](a+b+1) [*]a+b=1; f(χ)在χ=-1连续[*]f(-1+0)==f(-1-0)==f(-1)[*]a-b=-1=[*](a-b-1) [*]a-b=-1. 因此f(χ)在χ=±1均连续[*]a=0,b=1.当且仅当a=0,b=1时f(χ)处处连续. (Ⅱ)当(a,b)≠(0,1)时,若a+b=1(则a-b≠-1),则χ=1是连续点,只有χ=-1是间断点,且是第一类间断点;若a-b=-1(则a+b≠1),则χ=-1是连续点,只有间断点χ=1,且是第一类间断点;若a-b≠-1且a+b≠1,则χ=1,χ=-1均是第一类间断点.
解析
转载请注明原文地址:https://kaotiyun.com/show/H8V4777K
0
考研数学二
相关试题推荐
设y=f(χ)由cos(χy)+lny-χ=1确定,则=().
设g(χ)在[a,b]上连续,且f(χ)在[a,b]上满足f〞(χ)+g(χ)f′(χ)-f(χ)=0,又f(a)=f(b)=0,证明:f(χ)在[a,b]上恒为零.
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫-22|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明:(1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ];(2).
f(χ1,χ2,χ3,χ4)=XTAX的正惯性指数是2,且A2=2A=O,该二次型的规范形为_______.
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
求极限
求函数f(x)=sinx的间断点,并指出其类型。
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
随机试题
该患者病情进展属哪一种如出现对称性掌指关节病、关节晨僵症状,应首先考虑诊断
如果被审计单位以往未经注册会计师审计,当其固定资产数量多,价值大,占资产总额比重高时,应彻底审计自开业起的固定资产和累计折旧账户中的所有重要的借贷记录。()
民事法律行为的特征有()。
劳动合同订立的原则有()。
所谓租船运输是指货主有较多的货物,需要船舶的全部或部分舱位,与单独磋商,签订船舶租用合同而进行的运输。
休克是以()为特征。
针对外卖平台下的商家违规经营现象,领导交给你负责整治,你如何处理?
Whentheyadviseyourkidsto"getaneducation"ifyouwanttoraiseyourincome,theytellyouonlyhalfthetruth.Whatthey
Thehumannoseisanunderratedtool.Humansareoftenthoughttobeinsensitivesmellerscomparedwithanimals,【C1】______this
重载输入流运算符>>必须使用的原型为
最新回复
(
0
)