首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(a1,a2,…,an),其中a1,a2,…,an是n维列向量,若对于任意不全为零的常数k1,k2,…,kn,皆有k1a1+k2a2+…+kmam≠0,则( ).
设A=(a1,a2,…,an),其中a1,a2,…,an是n维列向量,若对于任意不全为零的常数k1,k2,…,kn,皆有k1a1+k2a2+…+kmam≠0,则( ).
admin
2019-11-25
58
问题
设A=(a
1
,a
2
,…,a
n
),其中a
1
,a
2
,…,a
n
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,…,k
n
,皆有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,则( ).
选项
A、m>n
B、m=n
C、存在m阶可逆阵P,使得AP=
D、若AB=O,则B=O
答案
D
解析
因为对任意不全为零的常数k
1
,k
2
,…,k
m
,有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,所以向量组a
1
,a
2
,…,a
m
线性无关,即方程组AX=0只有零解,故若AB=O,则B=O,选D.
转载请注明原文地址:https://kaotiyun.com/show/H9D4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,且g(x)>0.证明:存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设函数f(x)在[0,1]上连续,(0,1)内可导,且f(x)dx=f(0).证明:在(0,1)内存在一点c,使f’(c)=0.
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
函数(其中C是任意常数)对微分方程而言()
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
设函数f(χ)连续,且f(0)≠0,求极限=_______.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数,若f(A)<0,则在区间内方程f(x)=0的实根个数为()
随机试题
把人伦关系概括为五种,即“父子有亲、君臣有义、夫妇有别、长幼有序、朋友有信”,并且还提出“性善论”思想的是我国古代教育家()
A.丙酮酸激酶B.丙酮酸羧化酶C.糖原磷酸化酶D.6-磷酸葡萄糖脱氢酶糖酵解的关键酶是
世界上第一所护士学校创建的时间和地点
关于钢结构材料的特征,下列何项论述是错误的?[2007年第69题]
已知平面π:2x一y+z+1=0,直线则π与L()。
下列机床中属于刨床类的机床有( )。
1997年6月5日发布的《银行间债券回购业务暂行规定》第十四条规定,银行间债券市场回购的期限包括的品种有()。
某企业只生产和销售一种产品,并且只耗用一种原材料。目前正在着手编制2012年1月份的现金收支计划。有关资料如下:(1)月初现金余额为8000元。(2)月初有息负债余额为12000元,年利率4%,按月支付利息。(3)月初应收
使用天然火最早出现于人类发展过程的哪一阶段?()
下列各项,能同时影响资产和负债发生变化的是()。
最新回复
(
0
)