首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(a1,a2,…,an),其中a1,a2,…,an是n维列向量,若对于任意不全为零的常数k1,k2,…,kn,皆有k1a1+k2a2+…+kmam≠0,则( ).
设A=(a1,a2,…,an),其中a1,a2,…,an是n维列向量,若对于任意不全为零的常数k1,k2,…,kn,皆有k1a1+k2a2+…+kmam≠0,则( ).
admin
2019-11-25
44
问题
设A=(a
1
,a
2
,…,a
n
),其中a
1
,a
2
,…,a
n
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,…,k
n
,皆有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,则( ).
选项
A、m>n
B、m=n
C、存在m阶可逆阵P,使得AP=
D、若AB=O,则B=O
答案
D
解析
因为对任意不全为零的常数k
1
,k
2
,…,k
m
,有k
1
a
1
+k
2
a
2
+…+k
m
a
m
≠0,所以向量组a
1
,a
2
,…,a
m
线性无关,即方程组AX=0只有零解,故若AB=O,则B=O,选D.
转载请注明原文地址:https://kaotiyun.com/show/H9D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f’(x)在[a,b]上连续,且f(a)=0.证明:
设a,b均为常数,a>一2且a≠0,求a,b为何值时,有
设f(x)在(一∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期
(1)若f(x)=,试证f’(0)=0;(2)若f(x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)dt,试证f(x)≡0(一∞<x<+∞).
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
极限
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’"(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
A.化痰宁心B.行气豁痰C.补气、回阳、醒神D.回阳救逆、益气固脱E.涤痰熄风、开窍定痫痰厥的治法为
女,34岁,牙龈自发出血、疼痛3天,伴有低热。检查:下前牙牙龈乳头低平,唇侧龈乳头见灰黄色坏死区,异常口臭,该患者最可能患有
A、0.02%B、0.5%C、1%D、1.2%E、2%诺氟沙星中有关物质限量为
某畜产品公司经理在法国参加贸易洽谈会回国时,随身携带了2只活兔子、3张生兔皮样品、2包法国产的香肠和20粒法国名贵花木种子,以下表述正确的是()。
某个人准备在2013年投资新办一商业企业,在向注册税务师进行咨询时,注册税务师的以下说法中错误的是()。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。结合给定资料所反映的主要问题,用1200字左右的篇幅,自拟题目进行论述。要求中心明确,内容充实,论述深刻,有说服力。
[*]
设α、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
在一棵二叉树上,第5层的结点数最多是()。
Goodmorning,everyoneandwelcometotheEnglishforAcademicPurposesCenter.I’dliketobeginbybriefly【D1】______theservi
最新回复
(
0
)